การว**ิเคราะห์สหสัมพันธ์**

The statistical method is more than an array of techniques.

The statistical method is a mode of thought; it is sharpened thinking; it is power.

W. Edwards Deming

การวิเคราะท์สหสัมพันธ์ (Correlation Analysis) เป็นการศึกษาเกี่ยวกับความสัมพันธ์ระหว่างตัวแปรว่ามีความสัมพันธ์กันขนาดไหน (How Well) หรือเป็นการศึกษา ถึงระกับ (Degree) ของความสัมพันธ์ระหว่างตัวแปรนั่นเอง จะเห็นได้ว่าการวิเคราะห์ ถดถอยกับการวิเคราะห์สหสัมพันธ์จะศึกษาถึงความสัมพันธ์ระหว่างตัวแปรเช่นเดียวกัน แต่การถถอยเกี่ยวข้องกับการทำนายตัวแปร จากความรู้ของตัวแปรอื่น ส่วนสหสัมพันธ์ จะเกี่ยวข้องกับการอธิบายถึงระกับความสัมพันธ์ระหว่างตัวแปร มาตราวัดของสหสัมพันธ์ ระหว่างตัวแปร ได้ชื่อว่าสัมประสิทธิ์สหสัมพันธ์ (Correlation Cofficient) นั้นมีอยู่หลาย แบบซึ่งขึ้นอยู่กับชนิดของตัวแปร มาตราวัดความสัมพันธ์ที่เรารู้จักกันมากคือ สัมประสิทธิ์สหสัมพันธ์แบบเพียร์สัน (Pearson Product Moment Correlation Coefficient) มาตราวัดนี้เป็นมาตราวัดระดับความสัมพันธ์เชิงเส้น (Linear Relationship) ระหว่างตัวแปร และ y กำหนดไว้ดังนี้

$$P = E \left(\frac{X - \mu_X}{\sigma_X}\right) \left(\frac{Y - \mu_Y}{\sigma_Y}\right)$$
$$= \frac{N\Sigma XY - (\Sigma X) (\Sigma Y)}{\sqrt{\left\{N\Sigma X^2 - (\Sigma X)^2\right\} \left\{N\Sigma Y^2 - (\Sigma Y)^2\right\}}}$$

ทั่วประมาณค่าของ ρ โดยมีตัวอย่างจะเป็นดังนี้

$$r = \frac{1}{n-1} \sum \left(\frac{X - \overline{X}}{S_x}\right) \left(\frac{Y - \overline{Y}}{S_y}\right)$$
$$= \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{\sqrt{\left\{n\Sigma X^2 - (\Sigma X)^2\right\} \left\{n\Sigma Y^2 - (\Sigma y)^2\right\}}}$$

ค่าของ r จะอยู่ระหว่าง +1 กบ —1 ถ้าค่าของ r เป็น — ก็แสดงว่าตัวแป ทั้งสองมีความสัมพันธ์ไปในทิศทางตรงกันข้าม นั้นคือถ้าตัวแปรหนึ่งมีค่ามาก อีกตัวหนึ่ จะมีค่าน้อย แต่ถ้า r เป็น + ก็แสดงว่าตัวแปรทั้งสองมีความสัมพันธ์ไปในทางเดียวกั นั้นคือถ้าตัวแปรตัวหนึ่งมีค่ามาก (หรือน้อย) อีกตัวหนึ่งจะมีค่ามาก (หรือน้อย) เช่น เดียวกัน

ก้ำ r = -1 หรือ r = +1 ก็จะแสดงว่ามีความสัมพันธ์กันมากหรือสมบูรณ์ (Perfect Correlation) แต่ถ้ำ r = 0 เราจะถือว่าไม่มีความสัมพันธ์ (Uncorrelated) ใน เชิงเส้น

การประมาณค่าแบบช่องและการทุกสอบสมมุติฐานเกี่ยวกับสัมประสิทธิ์สหสัม พันธ์แบบเพียร์สันนี้ ได้อธิบายมาแล้วในการทุกสอบสมมุติฐาน

10.1 ความสัมพันธ์ระหว่างคัวแปรแบบนามบัญญัติ (Association Between Nominal Variables)

สำหรับสองทั่วแปร (หรือมากกว่า) ที่สนใจนั้นกำหนดข้อมูลแบบนามบัญญัทิ เรา มีมาทราวักดีกรีความสัมพันธ์ระหว่างตัวแปรอยู่หลายแบบ คังจะได้กล่าวในรายละเอียค พร้อมกับมาทราวัดและแบบทุดสอบอื่น ๆ ที่เกี่ยวข้องด้วย คังนี้

10.1.1 สมัประสิทธิ์ความเกี่ยวพันแบบยูล (Yule's Q And Y) สมัประสิทธิ์ Q นี้ ยูล (Yule, 1900) ได้เสนอขึ้น แต่ใช้อักษร Q เพื่อเป็นเกียรติแก่ Quetelet นักสถิติชาว เบลเยี่ยม สมัประสิทธิ์ Q นี้จะบอกถึงดีกรีที่ความถี่ซึ่งสังเกตได้ในการแจกแจงแบบสองค่า (dichotomous distribution) นั้นเบี่ยงเบนจากเงื่อนไขของความเป็นอิสระเชิงสถิติ และ กำหนดไว้ดังนี้

$$Q = \frac{P_{11} \hat{P}_{22} - P_{12} P_{21}}{P_{11} P_{22} + P_{12} P_{21}}$$

ในเมื่อ P_{ij} , (i,j=1,2) เป็นความน่าจะเป็นข้อสังเกตในเซล (i,j) ของคารางจรณ์ 2×2 ทั่วประมาณค่าของ Q กำหนดไว้ดังนี้

$$\hat{\mathbf{Q}} = \frac{\mathbf{f}_{11} \; \mathbf{f}_{22} - \mathbf{f}_{12} \; \mathbf{f}_{21}}{\mathbf{f}_{11} \; \mathbf{f}_{22} + \; \mathbf{f}_{12} \; \mathbf{f}_{21}}$$

ในเมื่อ f_{ij} , (i,j=1,2) เป็นความถื่หรือเปอร์เซนท์ที่สังเกตได้จากการางจรณ์ 2×2 ดังนี้

	Y	Y ₁	Y_2	รวม
X	X_1	f ₁₁	f ₁₂	f ₁ .
	X ₂	f ₂₁	t ₂₂	f ₂ .
•	ร่วม	f. ₁	f. ₂	n

โดยที่ f_i . และ $f_{i,j}$ v เป็นผลรวมของค่ำ X และ Y ทามลำคับ (i,j=1,2)

สำหรับสัมประสิทธิ์ Q นี้ ถ้าตัวแปรทั้งสองกำหนดข้อมูลแบบอันดับ (Ordinal Data) แล้ว Q จะเหมือนกับสัมประสิทธิ์ Q ของกูคแมนและครัสคัล (Goodman and Krus-kal) ซึ่งจะได้กล่าวต่อไป

ค่าของสัมประสิทธิ์ \hat{Q} จะอยู่ระหว่าง -1 ถึง 1 เมื่อ $\hat{Q} \equiv O$ ก็จะแสดงว่า ความถี่ที่สังเกทได้เป็นไปทามเงื่อนไขของความเป็นอิสระเชิงสถิติ สำหรับทารางจรณ์ 2×2 นั้น เงื่อนไขของความเป็นอิสระจะแสดงถึงคุณสมบัติค่อไปนี้

(1)
$$f_{11} / (f.1) = f_{12} / (f.2) = (f1.) / n$$

(2)
$$f_{21} / (f.1) = f_{22} / (f.2) = (f2.) / n$$

(3)
$$f_{11} / (f1.) = f_{21} / (f2.) = (f.1) / n$$

(4)
$$f_{12} / (f1.) = f_{22} / (f2.) = (f.2) / n$$

(5)
$$f_{11} f_{22} = f_{12} f_{21}$$
 หรือ $f_{11} f_{22} - f_{12} f_{21} = 0$

ทัวสถิติ Q มีความแปรปรวนที่ประมาณใก้คังนี้

$$S_{\hat{Q}}^{2} = \frac{(1-\hat{Q}^{2})^{2}}{4} (1/f_{11} + 1/f_{12} + 1/f_{21} + 1/f_{22})$$

ในเมื่อ fij > 0 (ทุกค่า i, j) กังนั้นในการประมาณช่วงเชื่อมั่นหรือทคสอบสมมทิฐาน เคียวกับ Q เมื่อใช้ตัวอย่างขนาดโต เราจึงใช้ตัวสถิติ Z

$$\mathbf{Z} \stackrel{\circ}{=} \hat{\mathbf{Q}} / \mathbf{S}_{\mathbf{Q}}^{\hat{}}$$

ซึ่งมีการแจกแจงปกติมาทรฐาน N (0, 1)

ตัวอย่าง ในการศึกษาถึงความสัมพันธุ์ระหว่างเพศของนักศึกษา (x) และทัศนกติในการ ทำแท้งของหญิงมีกรรภ์ (y) โดยอาศัยตัวอย่างสุ่มของนักศึกษา มร. 40 ราย ได้ข้อมูลซึ่งเป็นความถี่มาดังนี้

ทัศนค ท ิ (ชุ)	Y, เห็นค้วย	Y ₂ ไม่เห็นด้วย	รวม
เพศX _I : หญิง	9	16	25
$X_2: rac{1}{2}$ ชาย	11	. 4	15
ร วม	20	20	40

$$\hat{Q} = \frac{9(4) - (16)(11)}{9(4) + (16)(11)} = \frac{36 - 176}{36 + 176} = -140 / 212 = -0.66$$

$$S_{\hat{Q}}^2 = \frac{\left\{1 - (-.66)^2\right\}^2}{4} (1/9 + 1/16 + 1/11 + 1/4) = 0.041$$

 $\hat{S_O} = 0.201$

เมื่อเกี่ยวข้องกับสองตัวอย่างและประชากร เราก็สนใจความแตกต่างระหว่าง พารามิเตอร์ของสองประชากร Q_1 และ Q_2 ความแตกต่างระหว่าง Q_1 และ Q_2 จะได้เป็น \hat{Q}_1 , \hat{Q}_2 และ d_q

ถ้าตัวอย่างจากประชากรทั้งสองมีขนาดโต แล้วเราจะได้ว่า

$$Z = \frac{d_{q} - \partial_{q}}{S_{r} d_{q}}$$

มีการแจกแจงแบบปกติมาตรฐาน N (0, 1) ในเมื่อ s²d_q กำหนดไว้ว่า

$$S^{2}d_{q} = S^{2}_{\hat{Q}1} + S^{2}_{\hat{Q}2}$$

คังนั้นในการทคสอบความแ**กกก**่างของพารามิเ**กอร์** Q_1 และ Q_2 หรือทคสอบ สมมติฐานหลัก H_0

Ho:
$$Q_1 - Q_2 = \Delta$$

เราจึงใช้ตัวสถิติทคลอบ z

สำหรับช่วงเชื่อมั่นสำหรับ $Q_1-Q_2=\partial_q$ ก็อาศัยตัวสถิติ Z เช่นเดียวกัน ซึ่ง จะเป็น

$$Q_1 - Q_2 = d_q \pm Z\alpha/2 \sqrt{S^2 d_q}$$

สำหรับสมประสิทธิ์ยูล Y ซึ่งบางทีเรียกว่าสมประสิทธิ์ของการร่วมกัน (Coefficient of Colligation) นั้นกำหนดไว้ดังนี้

$$Y = \frac{\sqrt{P_{11} P_{22}} - \sqrt{P_{12} P_{21}}}{\sqrt{P_{11} P_{21}} + \sqrt{P_{12} P_{21}}} = \frac{1 - \sqrt{P_{12} P_{21} / P_{11} P_{22}}}{1 + \sqrt{P_{12} P_{21} / P_{11} P_{22}}}$$

ตัวประมาณค่า ŷ กำหนดไว้ว่า

$$\hat{Y} = \frac{1 - \sqrt{f_{12} f_{21} / f_{11} f_{22}}}{1 + \sqrt{f_{12} f_{21} / f_{11} f_{22}}}$$

สัมประสิทธิ์ Y จะมีคุณสมบัติเช่นเคียวกับสัมประสิทธิ์ Q ถึงแม้ว่าในข้อมูลชุด เคียวกันจะมีค่าไม่เท่ากัน โดยปกติ | Y | Z | Q | ยกเว้นแต่ตัวแปรทั้งสองเป็นอิสระ หรือ มีความสัมพันธ์กันอย่างสมบูรณ์

ความแปรปรวนที่ประมาณได้ของตัวสถิติ ชิ จะกำหนดไว้ดังนี้

$$S_{\hat{y}}^{2} = \frac{(1 - \hat{Y}^{2})^{2}}{16} (1/f_{11} + 1/f_{12} + 1/f_{22} + 1/f_{22})$$

ในเมื่อ $f_{ij} > 0$ (ทุกค่า i, j)

10.1.2 แบบทคลอบที่แท้จริงเกี่ยวกับความเป็นอิสระของสองคัวแปรชนิคสองค่า (Exact Test of Independence for two Dichotomous Variables)

สำหรับสองตัวแปร x และ y มีแต่ละตัวแปรมีเพียงสองค่านั้น เมื่อเป็นอิสระ กันเราจะได้ว่า

$$P(X_1 | Y_1) = P(X_1 | Y_2) = P(X_1)$$

 $P(X_1 \cap X_2) = P(X_1) P(Y_1)$

และยังได้ความสัมพันธ์อื่น ๆ อีกดังนี้

หรือ

$$P(X_1 \cap Y_2) = P(X_1) P(Y_2), P(X_2 \cap Y_1) = P(X_2) P(Y_1)$$

 $P(X_2 \cap Y_2) = P(X_2) P(Y_2)$

ความสัมพันธ์เหล่านี้ใช้พิจารณาการแจกแจงน่าจะเป็นของค่า f_{11} , f_{12} , f_{21} และ f_{22} จากคัว อย่างขนาด n ที่ว่า

$$f(f_{11}; f_{12}, f_{21}, f_{22}) = {n \choose f_{11}, f_{12}, f_{21}, f_{22}} {n \choose f_{11}, f_{12}, f_{21}, f_{22}} {n \choose f_{11}, f_{12}, f_{21}, f_{22}} {n \choose f_{11}, f_{12}, f_{21}, f_{22}}$$

ในเมื่อ $P_{11}=P(X_1\cap Y_1)$, $P_{12}=P(X_1\cap Y_2)$, $P_{21}=P(X_2\cap Y_1)$ และ $P_{22}=P(X_2\cap Y_2)$ ถ้าสมมติฐานเกี่ยวกับความเป็นอิสระเป็นจริง แล้วการแจกแจงคั้งกล่าวแต่มี เงื่อนไขกับ f_1 .. f_2 ., f_{-1} , f_{-2} จะเป็น

$$f(f_{11}, f_{12}, f_{21}, f_{22} | f_{11}, f_{22}, f_{11}, f_{22}) = \begin{pmatrix} f_{11} \\ f_{11} \end{pmatrix} \begin{pmatrix} f_{22} \\ f_{22} \end{pmatrix} \begin{pmatrix} f_{11} \\ f_{22} \end{pmatrix}$$

ซึ่งการแจกแจงเงื่อนไขนี้เป็นแบบไฮเปอร์จีโอเมทริคนั้นเอง ดังนั้นการทดสอบความเป็น อิสระจึง อาศัยการแจก แจงเงื่อนไข ซึ่งเป็น แบบไฮเปอร์จีโอเมทริคนี้ช่วยพิจารณาเขตปฏิเสธ เมื่อ n < 15 เราจะอาศัยการาง 28 แต่เมื่อ n > 15 เราจะอาศัยการแจกแจงดังกล่าวนั้น พิจารณาเขตปฏิเสธ หรือจะอาศัยการประมาณค่าตัวสถิติเพียร์สัน r^2

แบบทดสอบดังกล่าวนี้มีอำนาจทดสอบมาก (Most Powerful) สำหรับสมมทิฐาน เกี่ยวกับความเป็นอิสระ ถึงแม้ว่าจะขึ้นอยู่กับการแจกแจงไฮเปอร์จีโอเมทริค ตัวอย่าง ในการศึกษาการยอมรับทางสังคม (X) และการมีส่วนร่วมทางศาสนา (Y) ของ เด็กที่เป็นตัวอย่าง 17 ราย โดยทั้งคำถามเกี่ยวกับตัวแปรทั้งสอง แต่ละถามจะมีกำตอบ ว่า เคยและไม่เคย ให้เด็กตอบ ปรากฏว่าได้ข้อมูลซึ่งเป็นความถึดังนี้

Y	เคย	ไม่เก ย	
X เคย	5	1	6
ไม่เคย _	. 5	6	11
_	10	7	17

Ho: การยอมรับทางสังคมและการมี ส่วนร่วมทาง ศาสนาไม่มีความสัมพันธ์กัน

เนื่องจาก n = 17 ซึ่งมากกว่า 15 เราจึงต้องกำนวนความน่าจะเป็นจริงจาก การแจกแจงไฮเปอร์จีโอเมทริค และสมมติฐานเองไม่ได้บ่งทิศทางของความสัมพันธ์ ดัง นั้นทั้งสองทางของการแจกแจงจะเป็นเขตวิกฤต

ถ้า f_{11} เป็นจำนวนความถี่ที่ตอบว่าเคยทั้งของคำถาม แล้วค่าที่เป็นไปได้จะ เป็น $\left\{0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6\right\}$ ความน่าจะเป็นของค่าเหล่านั้นจะคำนวนได้ดังนี้

$$f(f_{11}) = ({}^{6}f_{11}) (10^{11} - f_{11}) / (10^{17}); f_{11} = 0, 1...6$$

 $f(0) = 0.00056, f(1) = 0.01696, f(2) = 0.12726$
 $f(3) = 0.33936, f(4) = 0.35633, f(5) = 0.14253$
 $f(6) = 0.01699$

เมื่อ $\alpha \leq 0.05$ เขตวิกฤตจะเป็น $\left\{0,\ 1,\ 6\right\}$ เนื่องจาก $f_{11}=5$ จึงปฏิเสธ H_0 ไม่ได้ การปฏิเสธ H_0 ไม่ได้สำหรับข้อมูลเหล่านี้เกิดขึ้น เพราะสองตัวแปรเป็นอิสระ กันจริงในประชากรของเด็ก หรือเป็นเพราะขนาดตัวอย่างเล็กและเซทของค่า f_{11} น้อย ไปที่จะกำหนดเขตปฏิเสธซึ่งจะบ้องกันการค้นหาความสัมพันธ์ระหว่างสองตัวแปรแห่งนี้

10.1.3 สมประสิทธิ์ความเกี่ยวพันธ์ที่อาศัยตัวสถิติใคสแควร์ของเพียร์สัน (Association Coefficient Based on Pearson Chi-Square Statistic)

สำหรบสองตัวแปรที่กำหนดข้อมูลแบบนามบัญญัตินั้น ถ้าต้องการทดสอบเป็น อิสระของมัน นั่นคือทรสอบสมมติฐานหลักที่ว่า

Ho: ตัวแปร X กับตัวแปร Y เป็นอิสระกัน เราก็อาศัยตัวสถิติทคสอบไคสแควร์ (Chi-Square Test for Independence) ซึ่งเป็นแบบทคสอบที่รู้จักกันดี นั่นคือตัวสถิติทคสอบไคสแควร์กำหนดไว้คังนี้

$$X_{r}^{2} = \sum_{i,j}^{r,c} (f_{ij} - e_{ij})^{2} / e_{ij} = \left\{ \sum_{i,j}^{r,c} f_{ij}^{2} / f_{i,...f_{j}} - 1 \right\} n$$

ในเมื่อ f_{ij} เป็นความถี่ที่สังเกตได้ในค่าที่ i ของ x (แถวนอน) และค่าที่ j ของ Y (แถวตั้ง) โดยมี i $\equiv 1,2,...,r$ และ j $\equiv 1,2,...,c$; e_{ij} เป็นที่คาดหวังภายใต้สมมติฐานที่ ว่าตัวแปรทั้งสองเป็นอิสระกัน และคำนวณได้จาก f_i (f_i) /n โดยที่ f_i เป็นผลรวมความถี่ในค่ามี j ของ Y; และ n เป็นขนาดตัวอย่าง

ถ้าตัวแปรทั้งสองเป็นอิสระกันจริง แล้วตัวสถิติทคสอบไคสแควร์จะมีการแจก แจงแบบไคสแควร์ด้วยองศาความเป็นอิสระ (r-1) (c-1) สำหรับองศาความเป็นอิสระนี้ พิจารณาได้ดังนี้ เนื่องจากเราทราบขนาดตัวอย่าง n ก่อน จำนวนเซลความถี่ที่เป็นอิสระจึง เป็น (rc-1) จำนวนพารามิเตอร์ที่เป็นอิสระ, P (Xi) = Pi ซึ่งต้องประมาณสำหรับตัวแปร X จะเป็น (r-1) เนื่องจากผลรวมของความน่าจะเป็นทางเดียว P (xi) เหล่านั้นรวมกันต้องเป็น 1 ความรู้เกี่ยวกับความน่าจะเป็นจำนวน (r-1) นี้จึงจะช่วยพิจารณาควบน่าจะเป็นที่ r ได้ ในทำนองเดียวกัน จำนวนพารามิเตอร์ที่เป็นอิสระ P (yi) = P, ซึ่งต้องประมาณตัวแปร Y จะเป็น (c-1) ดังนั้นจำนวนองศาความเป็นอิสระของตัวสถิติ \mathbf{X}^2 จึงเป็น

กรณีที่ r=2 และ c=2 หรือข้อมูลในรูปคาราง 2×2 ตัวสถิติไคสแควร์จะ

$$\chi^{2} = \frac{n \left(f_{11} \ f_{22} - f_{12} \ f_{21}\right)^{2}}{f_{1} \ f_{2} \ f_{1} \ f_{2}}$$

เมื่อทศสอบความสัมพันธ์ ด้วยตัวสถิติทศสอบไคสแควร์ แล้วพบว่าความสัมพันธ์ มีจริง ถ้าเราต้องการทราบคีกรีความสัมพันธ์เราก็ไม่ได้ใช้ \mathbf{x}^2 เป็นมาตราวัคโดยตรง เพราะ ค่าของมันไม่จำกัด นั่นคือ $0<\mathbf{x}^2<\infty$ เมื่อ \mathbf{x}^2 ใกล้ 0 จึงถือว่าตัวแปรเป็นอิสระกัน เนื่องจากขีดจำกัดของ \mathbf{x}^2 ไม่จำกัดจึงทำให้ยากที่จะหาดีกรีของความสัมพันธ์ คังนั้นจึงมีวิธี การที่จะจำกัดให้ค่าของ \mathbf{x}^2 อยู่ระหว่าง 0 กับ 1 วิธีการเหล่านั้นจะให้มาตราวัคความสัมพันธ์ ดังนั้นจึงงีนี้

(1) ฟายสแควร์ (Phi – Square; ϕ^2) สมประสิทธิ์ ϕ^2 กำหนดไว้เป็น

$$\phi^{2} = \sum_{ij} \frac{P(xi \cap yj)}{P(xi) P(yj)} - 1$$

ซึ่งประมาณด้วยตัวอย่างขนาด $_n$ ได้เป็น ϕ^2

$$\phi^2 = \sum_{ij} f_{ij}^2 / f_{i} f_{ij} - 1 = x^2 / n$$

เมื่อ r=c=2 หรือในรูปของคารางจรณ์ 2×2 เราได้

$$\hat{\phi}^2 = \frac{\left(f_{11} \ f_{22} - f_{12} \ f_{21}\right)^2}{f_1, f_2, f_{-1} \ f_{-2}}$$

ค่าสูงสุดของ $\hat{\phi}$ จะเท่ากับ q-1 ในเมื่อ $q=\min$. (r,c) ดังนั้นค่าของ $\hat{\phi}^2$ จึงเป็นดังนี้ $0 \leq \hat{\phi}^2 \leq q-1$

(2) สัมประสิทธิ์เชิงเงื่อนไขของเพียร์สัน (Pearson's Contingency Coefficient,

$$C = \sqrt{\frac{x}{x^2 + n}} = \sqrt{\frac{\hat{\phi}^2}{\hat{\phi}^2 + 1}}$$

ค่าของ C จะเป็นคังนี้ $0 \leq C \leq \sqrt{\frac{q-1}{q}} < 1.0$ ในเมื่อ $q = \min(r, c)$

เมื่อ r=c เราได้ $\max C=\sqrt{(r-1)/r}$ เราจึงปรับปรุงสัมประสิทธิ์ C ได้เป็น $C_{C}=C/\max C$

(3) สมประสิทธิ์เชิงเงื่อนไขของชูโพร (Tschuprow's Contingency Coefficient, T) ชูโพรได้เสนอมาตราวัดความสัมพันธ์โดยอาศัยตัวสถิติไคสแควร์อีกแบบหนึ่งซึ่งมีค่าอยู่ ระหว่าง 0 กับ 1 แต่ค่าสูงสุดจะเป็น 1 ก็ต่อเมื่อ r=c ถ้า $r\neq c$ แล้ว T < 1 สมประสิทธิ์ T กำหนดไว้เป็น

$$T = \sqrt{\frac{\frac{2}{x/n}}{\sqrt{(r-1)(c-1)}}} = \sqrt{\frac{\hat{\phi}^2}{(r-1)(c-1)}}$$

(4) สมประสิทธิ์เชิงเงื่อนไขของเครเมอร์ (Cramer's Contingency Coefficient, V) เครเมอร์ (Cramer, 1946) ได้แก้ไขข้อบกพร่องบางประการในสมประสิทธิ์ C และ T เพื่อให้ได้ค่าสูงสุดในการางจรณ์ r x c ใด ๆ แก่การแบ่งความหมายก็ยังค่อนข้างยาก สมประสิทธิ์ V กำหนดไว้ดังนี้

$$V = \sqrt{\frac{|X^2/n|}{q-1}} = \sqrt{\hat{\phi}^2/(q-1)}$$

ในเมื่อ q = min (r. c) และการแปลความหมายของค่า v จะกำหนดไว้เป็น

97 V	การแปลความหมาย
025	นักย (Weak)
.2650	ปานก ล าง (Moderate)
.5175	ก่อนข้างมาก (Moderate Strong)
.76 - 1.00	มาก (Strong)

ตวอย่าง ในการศึกษาถึงความสัมพันธ์ระหว่างคัวแปร x และ y ได้ข้อมูลสรุปดังนี้

Y	у ₁	у 2	у _ŝ	รวม
X x ₁	7	14	39	60
x ₂	- 8	5	8	21
x ₃	9	7	29	45
$\mathbf{x_4}$	5	12	15	32
รวม	2 9	38	91	158

Ho: ฑัวแปร X และ Y เป็นอิสระกัน

Ha: คั่วแปร X และ Y มีความสัมพันธ์กัน

$$X^{2} = 158 \left\{ 7^{2}/60 (29) + 14^{2}/60 (38) + 39^{2}/60 (91) + 8^{2}/21 (29) + \dots + 12^{2}/32 (38) + 15^{2}/32 (91) - 1^{2} \right\}$$

$$= 12.82$$

สำหรับ
$$\alpha = .05$$
 เราได้ $\alpha^{2} \stackrel{(4-1)}{=} (3-1)$ = 12.59 จึงปฏิเสธ Ho

แบบทคสอบความเป็นอิสระ หรือความเป็น เอกภาพ จึงไม่หยุคที่การ คำนวณค่าของตัวสถิติ X² เพราะค่าของมันสัมพันธ์ โดยตรงกับขนาคตัวอย่าง นั้น คือเมื่อเพิ่มขนาดตัวอย่าง มันจะเพิ่ม X² แต่ไม่เพิ่ม ϕ^2 หรือ V ซึ่งสามารถแสดงได้ดัง นั้

สำหรับขนาดตัวอย่าง $_{n}$ เราได้ $_{(n)}^{2}=$ สมมติว่าขนาดตัวอย่างเพิ่มเป็น $_{K}$ เท่า ซึ่งหมายความว่าภายใต้สมมติฐานหลัก $_{Ho}$ นั้นแต่ละ $_{Hj}$ จะเพิ่มโดยเฉลี่ยเป็น $_{K}$ $_{Hi}$ แต่ละ $_{Hi}$ จะเพิ่มเป็น $_{Ke_{ij}}$ ดังนั้น $_{Ke_{ij}}$ จะเป็น

$$X^{2}_{(Kn)} = \sum_{i,j}^{r,c} (Kf_{ij} - Ke_{ij})^{2} / Ke_{ij}$$

$$= K \sum_{i,j} (f_{ij} - e_{ij})^{2} / e_{ij} = K X^{2}_{(n)}$$

$$\text{UR*} \quad \phi^2_{(Kn)} = X^2_{(Kn)}/Kn = K X^2_{(n)}/Kn = X^2_{(n)}/n = \phi^2_{(n)}$$

ในการทุกสอบความสัมพันธ์ระหว่างคัวแปรจากตารางจรณ์ขนาด r x c โดยใช้ แบบทุกสอบใกสแควร์นั้น ถ้ามีหลาย ๆ ตาราง เราก็สามารถรวมข้อมูลจากหลาย ๆ ตาราง ที่เป็นอิสระกันได้ สำหรับวิธีการรวมแบบทุคสอบเครื่องหมายและวิธีการรวมตารางเออร์-วิน-พีเซอร์นั้นก็สามารถใช้รวมหลายตารางขนาด r x c ได้ ถ้าสอดคล้องกับเงื่อนไขต่อไปนี้

- ก. สมมติฐานที่เกี่ยวพันกับการางค่าง ๆ เหมือนกัน
- ข. สมมติฐานรองเหมือนกันและมีทิศทาง (directional)
- ก. การางมีมิติหรือขนาดเดียวกัน

แต่อย่างไรก็ตามถ้ำตารางเหล่านั้นไม่เป็นตารางจรณ์ 2 x 2 แล้วเกณฑ์ (1), (2), และ (3) ของวิธีการรวมตารางเออร์วิน – พี่ชูเชอร์จะใช้ ไม่ได้ แต่เกณฑ์ (4) อัน เป็นเกณฑ์แลมน์-ดาของเพียร์สันยังใช้ได้อยู่

จากคุณสมบัติเชิงบวกของตัวสถิติไคสแควร์ จึงสามารถใช้รวมข้อมูลจากตาราง วงจรณ์ที่เป็นอิสระได้ นั้นคือภายใต้สมมติฐานหลัก ของแต่ละตารางหรือ $\phi_k^2 = 0$; k = 1, 2, ... k เราทราบว่าตัวสถิติทคสอบ \mathbf{x}_k^2 จะมีการแจกแจงแบบไคสแควร์ด้วยองศาความ เป็นอิสระ ν_k ดังนั้นผลรวม T

$$T = X_1^2 + X_2^2 + ... + X_k^2$$

จึงมีการแจกแจงใคสแควร์ (โดยประมาณ) ด้วยองศาความเป็นอิสระ ב = ב₁ + ב₂ + ... + ב_k

ตัวอย่าง ในการศึกษาถึงความสัมพันธ์ระหว่างตัวแปรนามบัญญัติ x และ y ของนักศึกษาที่ บิคามีรายได้ระกับต่าง ๆ กัน ได้ข้อมูลสรุปคังความต่อไปนี้

ระคับรายได้ของบิดา	ท้า			ปานกลาง			สูง		
Y	Y ₁	Y ₂		Y ₁	Y ₂		Y ₁	Y ₂	
X X ₁	8	10	18	10	10	20	10	12	2 2
X_2	4	23	27	5	2 3	2 8	5	22	27
X ₃	3	7	10	5	8	13	6	2	8
รวม	15	40	55	2 0	41	61	21	36	57
X	-	4.92			5.71			9.59	
φ ²		0.090			0.094			0.168	

สำหรับ $\alpha=.05$ เราจะเห็นได้ว่ากลุ่มสูงเท่านั้นที่มีความสัมพันธ์ระหว่างตัวแปร X และ Y

เมื่อได้เกณฑ์แลมบ์คา ม เราจะได้

$$P_1 = P(X^2 > 4.92) = 0.0895$$
 $P_2 = P(X^2 > 5.71) = 0.0598$
 $P_3 = P(X^2 > 9.59) = 0.0086$

ทั้งนั้น
$$\lambda = -4.605 \sum_{\mathbf{k}} \log \left(\mathbf{P_k} \right)$$

$$= -4.605 \left\{ \log \left(0.0895 \right) + \log \left(0.0598 \right) + \log \left(0.0098 \right) \right\}$$

$$= 19.97$$

เนื่องจาก k=3 และ $\nu=2$ k=6 เราจึงปฏิเสธ Ho เพราะค่าวิกฤศ สำหรับ $\alpha=0.05$ คือ $X_{.05}^{2(6)}=12.59$

ถ้าใช้คุณสมบัติเชิงบวกของใคสแควร์ เราจะได้

$$T = 4.92 + 5.71 + 9.59 = 20.22$$

เนื่องจาก $\nu=2+2+2=k$ และ $\alpha=.05$ เราได้ค่าวิกฤตเป็น $\chi^{2(6)}_{.05}=12.59$ จึง ปฏิเสธ Ho: $\phi^2=0$

10.1.4 มาตราวัดแพรคลัดส่วนความคลาดเคลื่อน (Proportional—Reduction—in— Error Measures, PRE)

เพื่อที่จะหลีกเลี่ยงจุดอ่อนของ กัชนี หรือ มาตราวัดที่ขึ้น อยู่กับตัวสถิติไคสแควร์ นักสถิติจึงได้พัฒนาวิธีการต่าง ๆ ขึ้นมา วิธีการหนึ่งซึ่งเป็นที่รู้จักกันมากก็คือ เหตุผล เชิงลดสัดส่วนความคลาดเคลื่อน (Proportional – reduction – in – error (PRE) Logic)

มาตราวัดแพลกสัดส่วนความ คลาดเคลื่อนนี้ อาศัยแนวคิดง่าย ๆ ของ ความสัม พันธ์ดังนี้ สมมติว่าเล่นเกมโดยการสุ่มคนมาจากประชากรหนึ่ง และเดาคะแนนใน X ซึ่งเป็นตัวแปรตาม การทำนายทำได้ตามกฎ 2 กฎ ภายใต้กฎข้อแรกนั้นจะไม่มีข้อมูล ข่าวสารเพื่อใช้ทำนายคะแนนใน X ส่วนภายใต้กฎข้อที่สองผู้สำรวจจะพิจารณาแต่ละประ เภทใน Y และอาศัยข้อมูลข่าวสารนั้นไปช่วยทำนายค่าใน X เมื่อเปรียบเทียบความน่า จะเป็นของการที่ความคลาดเคลื่อนแบบแยกประเภทผิดภายใต้สองกฎนั้น แล้วเราจะได้ว่า มาตราวัดความเกี่ยวพันแบบลดความคลาดเคลื่อนเนื่อง จากใช้กฎ ที่สองที่ตรงข้าม กฎแรกจึง เป็นดังนี้

 $PRE = \frac{P(1) - P(2)}{P(1)}$

ในเมื่อ P(1) และ P(2) เป็นความน่าจะเป็นของการแยกประเภทหน่วยทคลองผิกตาม กฎข้อแรกและกฎข้อสองตามลำคับ

จะเห็นได้ว่ามาตราวัด PRE จะให้ค่าอยู่ระหว่าง 0 และ 1 ถ้าตัวแบ่รเป็น อิสระกันเชิงสถิติแล้ว PRE = 0 ซึ่งหมายความว่าความน่าจะเป็นของการแยกประเภท หน่วยทดลองผิดภายใต้กฎข้อแรกนั้น เท่ากับความน่าจะเป็นของการทำความคลาดเคลื่อน ภายใต้กฎข้อที่สอง และ PRE = 10 ถ้า P(2) = 0 ซึ่งเป็นกรณีมีความรู้ใน Y จะให้ การทำนายที่ถูกต้องต่อ X ถ้า P(1) = 0 แล้ว PRE จะกำหนดไม่ได้ (undefined) แต่กรณีเช่นนี้จะไม่เกิดขึ้นเพราะถ้าไม่มีความเป็นไปได้ ในการแยก ประเภทผิด ตามกฎข้อแรก แล้วหน่วยทดลองทั้งหมดจะต้องอยู่ในประเภทเดียวกันและไม่มีความผัมแปรใน X

เนื่องจากเหตุผลเชิงลกสักส่วนความคลาดเคลื่อน (PRE Logic) เป็นที่ใช้กัน อย่างกว้างขวาง มากราวัดแบบนามบัญญัติท่าง ๆ เกี่ยวกับความเกี่ยวพันธ์จึงขึ้นอยู่กับเหตุ ผลนั้นความหมายและการคำนวณของมาทราท่าง ๆ เหล่านั้น ก็อาศัยนิยามของความคลาด เคลื่อนนั้นเอง

(1) สัมประสิทธิ์การทำนายของกัทแมน (Guttman's Coefficient of Optimal Predictability) กัทแมน (Guttman, 1941) ได้พัฒนามาตราวัดความสัมพันธ์ ซึ่ง กุดแมนและครัสคัลเรียกว่าสัมประสิทธิ์การทำนายที่เหมาะสม มาตราวัดนี้ใช้นิยามของ ความคลาดเคลื่อนการทำนายโดยตรง

ทามกฎข้อแรก ถ้าทำนายประเภทหนึ่งใน x โดยไม่อาศัยความรู้ในการแยก ประเภทใน y แล้วการทำนายจะเป็นอย่างไร วิธีหนึ่งในการทำนายก็คือเดาประเภท x ที่ เกิดขึ้นบ่อยที่สุด (x s model category) ซึ่งจะให้สักส่วนสูงสุด เพราะค่าสังเกทส่วนมาก จะอยู่ในประเภทนี้ และในระยะยาวความคลาดเคลื่อนจะเกิดขึ้นน้อย

สำหรับการาง $r \times c$ ให้ P_m . แทนความน่าจะเป็นหรือสัดส่วนกามแนวนอนริมสุด ที่มากสุด (maximum marginal row probability) เมื่อไม่ทราบ Y เราควรจะเอาประเภทที่ สอดคล้องกับความน่าจะเป็น P_m ความน่าจะเป็นที่จะทำการทำนายถูกต้องคือ P_m ในเมื่อ ความน่าจะเป็นของความคลาดเคลื่อนคือ

$$P(1) = 1 - P_{m'}$$

ทามกฎข้อที่สอง ผู้สำรวจจะเลือกหน่วยแบบสุ่มและพิจารณาประเภทของหน่วย ใน Y แล้วจึงทำนายประเภท X ในการทำนายนั้นก็ต้องพิจารณาแต่งแถวตั้ง (หรือแต่ละ ประเภทของ Y) แล้วผู้สำรวจก็จะเลือกประเภท X มีเกิดขึ้นบ่อยที่สุด หรืออาจจะกล่าว ได้ว่าเมื่อกำหนดประเภทใน Y ให้ ก็จะเรียกประเภท X ที่มีสัดส่วนสูงสุด ความคลาดเคลื่อน จะเกิดขึ้นได้แต่ก็จะน้อยกว่าเลือกประเภทอื่นจาก X

ในทาราง $r \times c$ จะให้ P_{mj} แทนความน่าจะเป็นหรือสัดส่วนมีมากสุดของเซลโน แถวทั้งมี j ความน่าจะเป็นของความคลาดเคลื่อนภายใต้กฎพี่สอง, P(2), จะเป็น

$$P(2) = 1 - \sum_{j} Pm : j = 1, 2, ..., c$$

ดังนั้นเราจะได้มาคราวัดแบบลดสัดส่วนความคลาดเคลื่อนมีชื่อว่าแลมบ์ดา, $\lambda_{\mathbf{x}}$ หรือ $\lambda_{\mathbf{x}}$ ดังนี้

$$\lambda_{x} = \frac{(1 - P_{m}) - (1 - \sum P_{mj})}{1 - P_{m} \cdot x_{2}}$$

$$= \frac{\sum_{j} P_{mi} - P_{m}}{1 - P_{m}} : j = 1, 2, ... c$$

ในเมื่อ λ_x จะแสดงว่าประเภทของ X จะได้รับการทำนายจากข้อมูลข่าวสารของ Y ด้วยเหตุผลเดียวกันเมื่อเราให้ Y เป็นตัวแปรตาม แล้วเราจะได้มาตราวัด λ_y หรือ λ_b ดังนี้

$$\lambda_{y} = \frac{(1 - P_{\cdot m}) - (1 - \sum_{i} P_{im})}{1 - P_{\cdot m}} = \frac{\sum_{i} P_{im} - P_{\cdot m}}{1 - P_{\cdot m}}$$

ในเมื่อ P._m เป็นสักส่วนหรือความน่าจะเป็นที่สูงสุดของก้านข้างของแถวคั้ง และ P_{im} เป็น ความน่าจะเป็นที่สูงสุดในเซลของแถวนอนที่ i

มาทราวัค λ_x และ λ_y นี้ถือว่าเป็นมาทราวัคแบบไม่สมมาทร (Asymmetric Measure) คังนั้น λ_x จะไม่เท่ากับ λ_y

ในบางครั้งผู้สำรวจไม่ทราบหรือไม่ทั้งใจ จะรวม ค่าตัวแปร โดยเป็น ตัวแปรควบ (ตัวแปรที่จะทำนาย) ในกรณีนี้ก็จำเป็นต้องใช้มาตราวัดแบบมาตรา 🔏 ซึ่งได้จากการ ปรับปรุงเหตุผลเชิงลดสัดส่วนความคลาดเคลื่อนนั้นเอง

สมประสิทธิ์แบบสมมาตร λ จะรวมเหตุผลของการคำนวณทั้ง λ_x และ λ_y ดังนั้น เราจะได้ P(1) และ P(2) ดังนี้

$$P(1) = 1 - (P_{m.} + P_{m})/2$$

 $P(2) = 1 - (\sum_{i} P_{mi} + \sum_{i} P_{im})/2$

นั่นคือจะไก้ 🖈 เบ็น

$$\lambda = \frac{P(1) - P(2)}{P(1)} = \frac{1 - (P_{m'} + P_{m'})/2 - \left\{1 - (\sum P_{mj} + \sum P_{im})/2\right\}}{1 - (P_{m'} + P_{m'})/2}$$

$$= \frac{(\sum P_{mj} - P_{m'}) + (\sum P_{im} - P_{m'})}{(1 - P_{m'}) + (1 - P_{m'})}$$

ตัวประมาณค่าของ $\lambda_{\mathbf{z}}$, $\lambda_{\mathbf{y}}$ และ λ กำหนดไว้คังนี้

$$\begin{split} \hat{\lambda}_{\mathbf{x}} &= \frac{\sum_{\mathbf{j}} \mathbf{f}_{\mathbf{m}\mathbf{i}} - \mathbf{f}_{\mathbf{m}}}{\mathbf{n} - \mathbf{f}_{\mathbf{m}}}, \quad \hat{\lambda}_{\mathbf{y}} &= \frac{\sum_{\mathbf{i}} \mathbf{f}_{\mathbf{i}\mathbf{m}} - \mathbf{f}_{\mathbf{\cdot}\mathbf{m}}}{\mathbf{n} - \mathbf{f}_{\mathbf{\cdot}\mathbf{m}}} \\ \\ \mathbf{u} \\ \hat{\lambda} &= \frac{(\sum_{\mathbf{j}} \mathbf{f}_{\mathbf{m}\mathbf{j}} - \mathbf{f}_{\mathbf{m}}.) + (\sum_{\mathbf{j}} \mathbf{f}_{\mathbf{i}\mathbf{m}} + \mathbf{f}_{\mathbf{\cdot}\mathbf{m}})}{(\mathbf{n} - \mathbf{f}_{\mathbf{m}}.) + (\mathbf{n} - \mathbf{f}_{\mathbf{\cdot}\mathbf{m}})} \end{split}$$

ในเมื่อ f_{mj} , $f_{m.}$ f_{im} และ f_{im} เป็นความถี่ที่มากสุด ซึ่งสอดคล้องกับสัดส่วน P_{mj} , $P_{m.}$ P_{im} และ P_{im} ที่กล่าวมาแล้วนั้นเอง

ตัวอย่าง ในการศึกษาถึงความสัมพันธ์ระหว่างแผนการศึกษา (x) และการนับถือศาสนา (y) ของนักเรียนมัธยมต้น ได้ข้อมูลซึ่งเป็นจำนวนนักเรียนมาดังนี้

การนับถือศาส	านา (Y)	คริสต์ ($\mathbf{Y_1}$)	พุทธ (Y ₂)	อิสลาม (Y3)	รวม
แผนการศึกษ	า X ₁ : ไม่มีแผน	0	40	20	60
(X)	X ₂ : จบอาชีวศึกษา	5	10	1	16
	$\mathbf{X_3}$: จบมหาวิทยาลัย	.2 0	0	4	24
	รวม	2 5	50	25	100
$\lambda_{\mathbf{x}}$	$= \frac{(20 + 40 + 20)}{100 - 60}$	= 0.5	0		
$\lambda_{\mathbf{y}}$	$= \frac{(40 + 10 + 20)}{100 - 50}$	= = 0.4	0		
และ ว	(80 - 60) + (70 — 50)			

$$\lambda = \frac{(80 - 60) + (70 - 50)}{(100 - 60) + (100 - 50)} = 0.44$$

กูดแมนและครัสคัล (Goodman and Kruskal, 1963) ได้ประมาณความแปรปรวน ของ $\hat{\lambda_x}$ ไว้ดังนี้

$$S_{\widehat{\lambda}_{\mathbf{x}}}^{2} = \frac{\left(n - \sum_{j}^{\sum_{j}^{*}} fmj\right) \left(\sum_{j}^{\sum_{j}^{*}} fmj + fm. - 2\sum_{j}^{*} fmj\right)}{\left(n - fm.\right)^{3}}$$

ในเมื่อ ∑ีรmj แทนผลรวมของ fmj ค่างๆ มีเกิดขึ้นในแถวนอนเดียวกันกับ fm.

ดังนั้นในการทดสอบหรือประมาณกำแบบช่วงของ 2_x เราต้องอาศัยตัวสถิติ

$$Z = \frac{\hat{\lambda}_x - \lambda_x}{S\hat{\lambda}_x}$$

ซึ่งมีการแจกแจงแบบปกติมาตรฐาน N (0, 1) ถ้าตัวอย่างขนาดโต

บางครั้งเราสนใจที่จะเปรียบเทียบสัมประสิทธิ์ $\lambda_{\mathbf{x}}$ จากสองประชากรที่ให้ตัวอย่าง เป็นอิสระกัน เราก็อาศัยตัวสถิติ

$$Z = \frac{(\hat{\lambda} x_1 - \hat{\lambda} x_2) - (\lambda x_1 - \lambda x_2)}{S(\hat{\lambda} x_1 - \hat{\lambda} x_2)}$$

ซึ่งมีการแจกแจงปกติมาตรฐาน N (0,1) ถ้าขนาดตัวอย่าง n_1 และ n_2 โทพอ สำหรับ $s^2 (\hat{\lambda} \times_1 - \hat{\lambda} \times_2)$ กำหนดไว้ดังนี้

$$S^{2}(\hat{\lambda}_{x_{1}} - \hat{\lambda}_{x_{2}}) = S^{2}_{\lambda x_{1}} + S^{2}_{\lambda x_{2}}$$

กูกแมนและครัสคังยังได้พัฒนาการแจกแจงของ มิ ไว้ด้วย แต่ยุ่งยากในสูตรจึง ไม่ขอกล่าวไว้

ตัวอย่าง ในการศึกษาถึงความสัมพันธ์ของตัวแปรแบบนามบัญญัติสองตัว (x, y) จากกลุ่ม สองกลุ่มได้ข้อมูลมาดังนี้

	1	1	กลุ่ม 1				กลุ่ม 2		
•	Y .	у ₁	у ₂	У3		у ₁	у ₂	У3_	-
X	x ₁	1	1	13	15	30	0	0	30
	×2	0	9	, 6	15	10	15	0	25
	x ₃	15	12	3	30	0	0	25	25
		16	22	22	60	40	15	25	80
	ź	$\hat{\lambda} x_1 = \hat{\lambda} x_2 = \hat{\lambda} x_1 $	(30 + 15	_ 30	30 := f _{mj} + f _m		* f _{mj})		
	5	$x_1 =$		(n	. — f _{m.})	3	·		•

$$= \frac{\left[60 - (15 + 12 + 13)\right] \left[(15 + 12 + 13) + 30 - 2(12 + 15)\right]}{(60 - 30)^{3}}$$

$$= 0.0119$$

$$S^{2} \hat{\lambda}_{x_{2}} = \frac{\left[80 - (30 + 15 + 25)\right] \left[(30 + 15 + 25) + 30 - 2(30)\right]}{(80 - 30)^{3}} = 0.0032$$

เมื่อต้องการทคสอบสมมติฐานที่ว่า

Ho:
$$\lambda_{\mathbf{x}_1} = \lambda_{\mathbf{x}_2}$$
 หรือ $\lambda_{\mathbf{x}_1} - \lambda_{\mathbf{x}_2} = 0$

เราได้ค่าตัวสถิติทคสอบ z คังนี้

$$Z = \frac{(0.333 - 0.80) - 0}{\sqrt{0.0119 + 0.0032}} = -3.80$$

และสรุปได้ว่า $\lambda_{\mathbf{x}_1} \neq \lambda_{\mathbf{x}_2}$ เพราะ $/\mathbf{Z}/ > /\mathbf{Z}_{.05/2}$) = 1.96 สำหรับช่วงเชื่อมั่น 95% สำหรับผลต่าง $\lambda_{\mathbf{x}_1} - \lambda_{\mathbf{x}_2}$ กำหนดไว้ดังนี้

$$\lambda_{x_1} - \lambda_{x_2} = (\hat{\lambda}_{x_1} - \hat{\lambda}_{x_2}) \pm Z_{\alpha/2} \, S \, (\hat{\lambda}_{x_1} - \hat{\lambda}_{x_2})$$

$$= (0.333 - 0.80) \pm 1.96 \, \sqrt{0.0119 + 0.0032}$$

$$= -0.467 \pm 1.96 \, (0.123) = -0.467 \pm 0.241$$

$$= -0.708, -0.226$$

ซึ่งแสกงว่า $\lambda_{\mathbf{x_1}} < \lambda_{\mathbf{x_2}}$

(2) สัมประสิทธิ์แบบของถูคแมนและครัสคัณ (Goodman and Kruskal's Tau, r) มาตราวัดเบ็นการแก้ ไขของการเคาเกมที่สมมติไว้ ในตอนที่แล้วเคาสุ่มหน่วยทคลอง กำหนดให้แก่ x ตัวแปรตามด้วยการทราบหรือไม่ทราบตัวแปรอิสระ แต่ตอนนี้การกำหนด จะคงรักษาการแจกแจงเดิมอยู่

การรักษาการแจกแจงพบมากว่าการแจกแจงของการกำหนดจะเป็นเช่นเดียวกับ การแจกแจงเดิม คัวอย่างเช่นถ้าหน่วยทดลองจำนวน f_1 และ f_2 อยู่ในสองประเภทแรก ของ \mathbf{x} แล้วกระบวนการกำหนดก็ยังคงไว้ซึ่งจำนวน f_1 และ f_2 ในประเภทนั้นอยู่ เมื่อ

คำนวณ ว ภายใต้กฎข้อแรกทุกหน่วยจะกำหนดให้ประเภทนี้มากสุดของ X (X's wrdal Categary) และดังนั้นแบบแผนของการเดาจะไม่เป็นเช่นเดียวกับการแจกแจงที่สังเกตได้ ด้วยเหตุนี้เองกูดแมนและคริสคัล (Goodman and Kruskal, 1954) ได้เสนอมาตราวัดความสัมพันธ์ ซึ่งขึ้นอยู่กับการรักษาการแจกแจงเดิมไว้ และแทนด้วย r

มาตราวัก τ ต้องการการกำหนดซึ่งเป็นสักส่วนกับจำนวนหน่วยทดลองในประเภทต่าง ๆ ให้ประเภทของ X และ Y เป็น $X_1, X_2, ..., X_r$ และ $Y_1, Y_2, ..., Y_c$ ภายใต้ กฎข้อแรก จะเคาเป็นประเภทแรกของ X หรือ X_1 ด้วยความน่าจะเป็น P_1 , ประเภทที่สอง ค้วยความน่าจะเป็น P_2 , และเรื่อย ๆ ไปสำหรับ r ประเภทของ X อัตราความคลาดเคลื่อน คาดหวังระยะยาว (long-run expected error rate) จะเป็น $P_{(1)}$

$$P(1) = 1 - \sum_{i} P_i^2$$

ภายใต้กฎที่สอง จะเคา X_1 ค้วยความน่าจะเป็น P_{ij} / P_{ij} (ความน่าจะเป็นเงื่อนไขของ X_1 เมื่อกำหนด Y_1 ให้), X_2 ค้วยความน่าจะเป็น P_{2i} / P_{ij} , และต่อ ๆ ไปสำหรับทุกค่าของ \mathbf{r} และ \mathbf{c} อัตราความคลาดเคลื่อนคาดหวังสำหรับวิธีการณ์ก็คือ $\mathbf{P}(2)$

$$P(2) = 1 - \sum_{i,j} P_{ij}^2 / P_{ij}$$

กังนั้นการลดแบบสักส่วนในความคลาดเคลื่อนที่ขึ้นอยู่กับเงื่อนไขของการรักษาผลรวมด้าน ข้างเดิม (Original marginal totals) ก็จะเป็น $\tau_{\rm x}=\tau_{\rm a}$

$$\tau_{x} = \frac{\sum_{i,j} P_{ij}^{2} / P_{\cdot j} - \sum_{i} P_{i}^{2}}{1 - \sum_{i} P_{i}^{2}}.$$

เช่นเคียวกับ λ ค่า 🚓 จะอยู่ระหว่าง 0 กับ 1 และ 🚓 จะไม่สมมาคร

ทั่วประมาณค่าของ au_{x} จะได้เป็น $\hat{ au_{x}}$ ซึ่งจะเกี่ยวข้องกับตัวประมาณค่าใน P(1) และ P(2) คั่งนี้

$$P(1) = 1 - \sum_{i} (f_{i} / n)^{2} = 1 - \sum_{i} f_{i}^{2} / n^{2}$$

$$= \frac{n - \sum_{i} f_{i}^{2} / n}{n}$$

$$\hat{\mathbf{P}}$$
 (2) = 1 - $\sum_{i,j} (f_{ij}/n)^2 / (f_{ij}/n) = 1 - \sum_{i,j} f_{ij}^2/n f_{ij}$

$$= \frac{n - \sum f_{ij}^2 / f_{ij}}{n}$$

คังนั้น
$$\hat{\tau}_{n} = \frac{\hat{\mathbf{p}}(1) - \hat{\mathbf{p}}(2)}{\hat{\mathbf{p}}(1)} = \frac{\sum_{i,j} f_{ij}^2 / f_{ij} - \sum_{i} f_{i}^2 / n}{n - \sum_{i} f_{ij}^2 / n}$$

ในทำนองเคียวกัน 🚓 ก็จะหาได้เป็น

$$\hat{\tau}_{y} = \frac{\sum_{i,j}^{2} f_{ii} - \sum_{j} f_{ij}^{2} / n}{n - \sum_{i} f_{ij}^{2} / n}$$

คังนั้นเราจะใช้
$$\hat{\tau} = \frac{\left\{ \sum\limits_{i,j} f_{ij}^2/f_{\cdot j} - \sum\limits_{i} f_{i}^2/n \right\} + \left\{ \sum\limits_{i,j} f_{ij}^2/f_{i\cdot} - \sum f_{\cdot j}^2/n \right\}}{\left\{ n - \sum\limits_{i} f_{i}^2/n \right\} + \left\{ n - \sum\limits_{i} f_{j}^2/n \right\}}$$

ในเมื่อ f_i , f_{ij} และ f_{ij} เป็นความถี่ซึ่งสอกคล้องกับ P_i , P_{ij} และ P_{ij} ทามลำคับ

สำหรับ τ นั้นเป็นมาตราวัดแบบสมมาตร ค่าของ ε อยู่ระหว่าง 0 กับ 1 เช่น เดียวกับ $\tau_{\mathbf{x}}$ และ $\tau_{\mathbf{y}}$ แต่ $\tau_{\mathbf{x}}$ และ $\tau_{\mathbf{y}}$ นั้นเป็นมาตราวัดแบบไม่สมมาตร

ไลท์ และ มาร์โกลิน (Light and Mangolin, 1971) ได้เสนอมาตราวัดมาตรเกี่ยว พันโดยใช้วิธีการวิเกราะห์ความแบ่รปรวน สมมติว่าตัวแปรแถวตั้ง Y เป็นแฟกเตอร์ที่จะ ศึกษา และตัวแบ่รตาม X เป็นการตอบสนอง แล้วเราจะได้ผลรวมที่ว่าของทั้งหมด (SST) ใน X เป็นกังนี้

$$SST = \frac{n}{2} - \frac{1}{2n} \sum_{i} f_{i}^{2}.$$

ตามวิธีวิเคราะห์ความแปรปรวนทางเคียว เราจะได้ว่า

$$SST = SSB + SSW$$

ในเมื่อ SSB เป็นผลรวมกำลังสองระหว่างกลุ่ม และ SSW เป็นผลรวมกำลังสองภายในกลุ่ม

$$SSW = \frac{n}{2} - \frac{1}{2} \sum_{i,j} f_{ij}^2 / f_{ij}$$

$$SSB = SST - SSW$$

มากราวักความเกี่ยวพันซึ่งคล้ายกลึงกับกำลังของสหสัมพันธ์แบบผลกูณโมเมนด์ (r²) และเหมือนกับ r ซึ่งไลท์ และ มาร์โกลิน เสนอ์ไว้ คือ

$$R_A^2 = SSB/SST$$

เช่นเกี่ยวกับ \mathbf{Y}^2 ที่ $\mathbf{R}_{\mathbf{A}}^2$ จะแสดงว่าสัดส่วนของความผันแปรใน \mathbf{X} อธิบายได้ด้วย \mathbf{Y} แต่ไม่ เหมือนกับ \mathbf{R}^2 โดยมี $\mathbf{R}_{\mathbf{A}}^2$ เป็นมาตราวัดแบบไม่สมมาตร และ $\mathbf{R}_{\mathbf{A}}^2$ มีค่าเท่ากับ $\hat{\boldsymbol{\tau}}_{\mathbf{x}}$ และยัง ให้การแปรความหมายเช่นเดียวกันอีก แต่ $\mathbf{R}_{\mathbf{A}}^2$ มีข้อได้เปรียบที่ง่ายต่อการทดสอบอันสำคัญ เพราะเมื่อตัวอย่างขนาดโดและภายใต้สมมติฐานที่ว่ามีความเป็นอิสระกันระหว่าง \mathbf{X} กับ \mathbf{Y} แล้วตัวสถิติ

$$M = (n-1) (r-1) R_A^2$$

จะมีการแจกแจงแบบใคสแควร์ที่มีองศาความเป็นอิสระ (r-1)(c-1) ตัวอย่าง จากตัวอย่างของความสัมพันธ์ระหว่างแผนการศึกษา (X) กับการนับถือศาสนา (Y) จะได้ τ_x , τ_y และ τ ดังนี้

$$\sum f_{i}^{2}/n = \frac{(60^{2} + 16^{2} + 24^{2})}{100} = 44.32$$

$$\sum f_{ij}^{2}/f_{\cdot j} = \frac{(0^{2} + 5^{2} + 20^{2})}{25} + \frac{(40^{2} + 10^{2} + 0^{2})}{50} + \frac{(20^{2} + 1^{2} + 4^{2})}{25}$$

$$= 67.68$$

$$\tau_{x} = \frac{67.68 - 44.32}{100 - 44.32} = 0.42$$

$$\sum f_{\cdot j}^{2}/n = \frac{(25^{2} + 50^{2} + 25^{2})}{100} = \frac{37.50}{100}$$

$$\sum f_{ij}^{2}/f_{i} = \frac{(0^{2} + 40^{4} + 20^{2})}{60} + \frac{(5^{2} + 10^{2} + 1^{2})}{100} = \frac{(20^{2} + 40^{4} + 20^{2})}{100} = \frac{37.50}{100 - 37.50}$$

$$\tau_{y} = \frac{58.55 - 37.50}{100 - 37.50} = 0.34$$

$$\tau = \frac{(67.68 - 44.32) + (58.55 - 37.50)}{(100 - 44.32) + (100 - 37.50)} = 0.38$$

SST =
$$(100/2) - (1/2) (44.32) = 27.84$$

SSW = $(100/2) - (1/2) (67.68) = 16.16$
SSB = SST - SSW = $27.84 - 16.16 = 11.68$
 $R_A^2 = SSB/SST = 11.68/27.84 = 0.42$

 $M=(n-1)(r-1)\ R_A^2=(100-1)(3-1)(0.42)=83.16$ คังนั้น M จะมีนัยสำคัญ นั้นคือ X และ Y มีความสัมพันธ์กัน

(3) สหสัมพันธ์บางส่วนแบบภูคแมนและครัสกัส (Goodman and Kruskai's Partial Lambda) กูดแมน และ ครัสกัส (1954) ได้เสนอมาคราวัดความเกี่ยวพันบางส่วน ระหว่างตัวแปรแบบนามบัญญัติหรือแบบอันดับไว้ จากการใช้เหตุผลแพลดสัดส่วนความคลาดเคลื่อน (Pre) เขาแนะนำในการอธิบาย Y ไว้ 2 วิธี คือ (1) โดยการทราบแต่เพียง คะแนนของ Z (ตัวแปรควบคุม) และ (2) โดยการทราบคะแนนทั้ง Z และ Y (ตัวแปรอิสระ) มาคราวัดความเกี่ยวพันบางส่วนนี้เป็นรูปทั่วไปของ λ (ในเมื่อใช้แต่ Y เท่านั้น) ซึ่งกำหนดไว้

$$\lambda_{xy} = \frac{\sum\limits_{k.j} P_{mjk} - \sum\limits_{k} P_{m.k}}{1 - \sum\limits_{k} P_{m.k}}$$

โดยที่ $P_{m,k}$ เป็นความน่าจะเป็นแถวนอนค้านข้างที่มากสุดในค่าที่ k ของ Z และ $P_{m,k}$ เป็น ความน่าจะเป็นสูงสุดในแถวทั้ง ๆ มี j ของค่ามี k ในตัวแปร Z (i=1,2,...,r,j=1,2,...,c, k=1,2,s)

ตัวประมาณค่าของ $\lambda_{xy,Z}$ กำหนดไว้ดังนี้

$$\hat{\lambda}_{xy..Z} = \frac{\sum_{k,j} f_{mjk} - \sum_{k} f_{m.k}}{n - \sum_{k} f_{m.k}}$$

ในเมื่อ f_{mjk} และ $f_{m,k}$ เป็นความถี่ที่สอกคล้องกับ P_{mjk} และ $P_{m,k}$

เมื่อตัวอย่างขนาดโต เราได้ก่าประมาณของความแปรปรวนของ $\hat{\lambda}_{yn,Z}$ ได้เป็น

$$\mathbf{S}_{\mathbf{xy.z}}^{\mathbf{z}} = \frac{(\mathbf{n} - \sum \mathbf{f}_{\mathbf{mjk}})(\sum \mathbf{f}_{\mathbf{mjk}} + \sum \mathbf{f}_{\mathbf{m.k} - 2} \sum \mathbf{f}_{\mathbf{mjk}})}{(\mathbf{n} - \sum \mathbf{f}_{\mathbf{m.k}})^3}$$

ในเมื่อ $\mathcal{T}^{*}_{\mathbf{f}_{\mathbf{m}jk}}$ เป็นผลรวมของ $\mathbf{f}_{\mathbf{m}jk}$ ค่าง ๆ มีอยู่ในแถวนอนเคียวกับ $\mathbf{f}_{\mathbf{m}.k}$ สำหรับทุกค่า $\mathbf{k}_{\mathbf{k},j}$

เนื่องจาก $\hat{\lambda}_{xy,Z}$ มีการแจกแจงแบบปกติ (โดยประมาณ) ที่มีค่าเฉลี่ย $\lambda_{xy,Z}$ และ ความแปรปรวน $\mathbf{S}_{\widehat{\chi}_{xy,Z}}^2$ (ค่าประมาณ) เราจึงได้คุณสมบัตินี้พอสมสมมติฐานและสร้างช่วง เชื่อมั่นของ $\lambda_{xy,Z}$ ได้

สำหรับความเกี่ยวพันบางส่วนของ 2 และ 🕳 นั้น สามารถจะหาได้โดยการเฉลี่ย สมประสิทธิ์ความเกี่ยวพันของตัวแปรสองตัว (X, Y) ในค่าของตัวแปรที่สาม (Z) ที่ควบคุม ไว้ การเฉลี่ยอาจจะเป็นการเฉลี่ยธรรมดา หรือโดยการถ่วงน้ำหนักก็ได้ดังนี้

(ก) ไม่ถ่วงน้ำหนัก

ในเมื่อ k เป็นจำนวนค่าของ**กั**วแปรที่สาม (z)

(ข) ถ่วงน้ำหนักด้วยจำนวนตัวอย่างในค่าต่าง ๆ ของตัวแปรควบคุม

$$Statistics_{xy.z} = (\sum Statistic_i(n_i))/(\sum n_i)$$

ในเมื่อ n; เป็นจำนวนตัวอย่างในค่าที่ i ของ z

(ค) ถ่วงน้ำหนักด้วยส่วน (Conditional Denominators)

$$Statistic_{xy.z} = \frac{\sum Statistic_{i}(Denominator_{i})}{\sum Denominator_{i}}$$

ตัวอย่าง ในการศึกษาเกี่ยวกับการวางแผนการศึกษา (x), การนับถือศาสนา, และ

ชนชั้นทางสังคม (z) ของนักเรียนมัธยมโดยอาศัยตัวอย่างได้ข้อมูลซึ่งเป็นความถื่มาดังนี้

		$Z_1:$ 9	ชนชั้นทำ		2	Z ₂ :	ชนชั้นสูง		
	Y	Y_1	Y_2	Y ₃		Y ₁	Y ₂	Y ₃	
X	X_1	0	11	9	20	0	29	11	40
	X_2	0	5	1	6	5	5	0	10
	X ₃	8	0	0	8	12	0	4	16
		8	16	10	34	17	34	15	66

ในเมื่อ X_1 : ไม่มีแผนการเรียนต่อ X_2 : เรียนอาชีพ X_3 : เรียนมหาวิทยาลัย และ Y_1 : คริสต์, Y_2 : พุทธ, Y_3 : อิสลาม

$$\hat{\lambda}_{xy.Z} = \frac{\left\{ (8+11+9)+(12+29+11) \right\} - (20+40)}{100-(20+40)}$$

$$= 20/40 = 0.50$$

$$\tau_{x_1} = \frac{(8^2/8 + 11^2/16 + 5^2/16 + 9^2/10 + 1^2/10) - (20^2 + 6^2 + 8^2)/34}{34 - (20^2 + 6^2 + 8^2)/34}$$

$$= 0.55$$

$$\tau_{x2} = \frac{(5^{2}/17 + 12^{2}/17 + 29^{2}/34 + 5^{2}/34 + 11^{2}/15 + 4^{2}/15) - (40^{2} + 10^{2} + 16^{2})/66}{66 - (40^{2} + 10^{2} + 16^{2})/66}$$

$$= 0.41$$

กังนั้น (ก)
$$\tau_{x (yx.Z)} = (0.55 + 0.41)/2 = 0.48$$

(7)
$$\tau_{x (yx.Z)} = \frac{0.55(34) + 0.41(66)}{34 + 66} \approx 0.46$$

$$(f)$$
 $\tau_{x (yx.Z)} = \frac{0.55 (19.30) + 0.41 (36.36)}{19.30 + 36.36}$

$$= 0.46$$

ในเพื่อส่วนก็อ
$$34 - (20^2 + 6^2 + 8^2)/34 = 19.30$$
 และ $66 - (40^2 + 10^2 + 16^2)/66$
= 36.36

10.1.5 มาตราวัตการสอดคล้อง (Measures of Agreement)

ในบางครั้งเรามีความสนใจการสอดกล้องกันระหว่างสองกลุ่ม (เช่น สามีและ ภรรยา พ่อแม่และบุตร) หรือสองผู้ตัดสินซึ่งจะประเมินผลของแต่ละคน เช่น สนใจว่า สามีและภรรยา มีทัศนคติต่อพฤติกรรมบางอย่างของเด็กนั้นสอดคล้องกันหรือไม่ การ สอดกล้องจะสูงสุดถ้าสมาชิกทั้งสองของแต่ละคู่ (สามีและภรรยา) ได้คำตอบเดียวกัน วิธี ที่จะกำหนดการสอดคล้องก็คือคำนวณสัดส่วนของหน่วยทดลองที่อยู่ในแถวทะแยงหลัก (main diagonal) ของตารางจัตุรัส r x r

ให้ $P_0 = \sum_i P_{ii}$ (i = 1, 2, ..., r) เป็นสักส่วนของหน่วยทุกลองมีอยู่ในแถว แรกของการางจัตุรัสที่มี r แถวนอนและแถวทั้ง P_0 ไม่เป็นคัชนีของความสอกคล้องที่ สมบูรณ์ เพราะว่าบางหน่วยอาจจะอยู่ในแถวกลางเพราะโศลก (by chance) จึงจำเป็นต้อง แก้ไขการเกิดขึ้นแบบโศลก โดยใช้ $P_0 - P_0$ ในเมื่อ $P_0 = \sum_i P_i P_i$ และ P_i กับ P_{ij} เป็นสักส่วนก้านข้างในแถวนอนและแถวตั้งมี P_0 กามลำคับ หรืออาจจะกล่าวได้ว่า P_0 นั้น เป็นผลรวมของสักส่วนที่หวังไว้ภายใต้ตัวแบบของการเป็นอิสระ อย่างไรก็ตามมาตรานี้ยัง ขึ้นอยู่กับผลรวมด้านข้าง จึงต้องหารค้วย P_0 ซึ่งเป็นค่าที่เป็นไปได้ที่สูงสุดสำหรับ ผลรวมด้านข้างมีกำหนดให้ P_{ij} และ P_{ij} กังนั้นมาตราวัดการสอดคล้อง R_0 จึงกำหนดไว้ คังนี้

$$K = (P_0 - P_c)/(1 - P_c)$$

โกเชน (Cohen, 1960) เป็นผู้เสนอมาทราวัก K นี้ และ K เป็นมาทราวักสักส่วน ของการสอกกล้องระหว่างสองกลุ่มหรือสองผู้ทักสินซึ่งจะประเมินผลแต่ละคน และได้แก้ไข การสอกกล้องเนื่องจากโศลกแล้ว ค่าของ K เป็น 0 เมื่อจำนวนของการสอกกล้องเท่ากับ จำนวนกากหวังทามโศลก และ K จะเป็น 1 เมื่อกลุ่มหรือผู้ตัดสินเห็นก้วยอย่างสมบูรณ์ และมันจะเป็นลบ (—) ถ้าการสอกกล้องที่สังเกทได้น้อยกว่าการสอกกล้องที่กากหวังโดย โศลก

ตัวประมาณค่าของ K กำหนดไว้ดังนี้

$$\hat{K} = (\sum_{i,j} f_{i,j} - \sum_{i,j} f_{i,j}/n)/(n - \sum_{i,j} f_{i,j}/n)$$

ในบางกรั้งการไม่สอกคล้องกันสำหรับสองกลุ่มอาจจะมีความสำคัญ (Seriousness) ค่างกัน จึงจำเป็นต้องถ่วงน้ำหนักแต่ละเชลของคารางคามความสำคัญของการไม่สอกคล้อง กัน คังนั้นมาคราวัค K จึงเป็น Kw

$$K_w = (P_0' - P_C')/(1 - P_C')$$

ในเมื่อ $P_0 = \sum_{ij} W_{ij}$ P_{ij} , $P_c = \sum_{ij} W_{ij}$ P_i . P_{ij} และ W_{ij} เป็นน้ำหนักถ่วงโนเชลส์ที่ ij ของศารางที่มี r = c สำหรับ P_0 และ P_c นั้นเป็นสักส่วนของการสอกคล้องสังเกทใก้ และที่กาดหวัง (ภายใต้ความเป็นอิสระ) โดยการถ่วงน้ำหนัก ตัวประมาณค่าของ K_W จะเป็น

$$\hat{K}_{w} = \frac{\sum W_{ij}f_{ij} - (\sum W_{ij}f_{i}f_{i})/n}{n - (\sum W_{ij}f_{i}f_{i})/n}$$

เมื่อตัวอย่างขนาดโตที่สุ่มจากประชากรแบบพหุนาม (Multinomial distribution) แล้วค่าประมาณของความแปรปรวนของ K̂w จะเป็น

$$S_{\mathbf{w}}^{2} = \frac{(1/n(1-\hat{P}_{c})^{4})\{(1/n)\sum_{c}f_{ij}(\mathbf{w}_{ij}(1-\hat{P}_{c})-(\mathbf{w}_{i}.+\mathbf{w}_{.j})(1-\hat{P}_{o}))^{2}\}}{-(\hat{P}_{o}\hat{P}_{c}-2\hat{P}_{c}+\hat{P}_{o})}$$

ในเมื่อ **W**_{ij} เป็นน้ำหนักถ่วงที่ปรับปรุงให้มีค่าอยู่ระหว่าง 0 กับ 1.0

การแจกแจงตัวอย่างของ $\hat{K_w}$ จะเห็นแบบปกติเมื่อตัวอย่างขนาดโท คั้งนั้น $\hat{s_{K_w}}^2$ จึงใช้สร้าง ช่วงเชื่อมั่นได้ ภายใต้ข้อสมมติของความเป็นอิสระ $\hat{s_{K_w}}^2$ จะลดลงเป็น

$$S_{\hat{k}_{w}}^{2} = (1/n(1-\hat{P}_{c})^{2})\{(1/n)\sum_{i,j}f_{i,j}(W_{i,j} - (\bar{W}_{i,j} - \bar{W}_{i,j}))^{2} - \hat{P}_{c}^{2}\}$$

ซึ่งจะใช้ทุกสอบสมมุติฐานที่ว่า $K_W \equiv 0$ ได้ เพราะเราถือว่า $Z \equiv \hat{K_W}/S_{\hat{K_W}}$ มีการ แจกแจงปกติมาศรฐาน N (0,1) สำหรับ \hat{K} นั้น เป็นตัวอย่างขนาดโตก็จะได้ \hat{S}^2K เช่นเดียวกับ $\hat{S}^2\hat{K}$ แต่ $\hat{W}_{ij}=1$ สำหรับ i=j และ \hat{W}_{ij} สำหรับ $i\neq j$ ตัวอย่าง ในการศึกษาพฤติกรรมการออกเสียงเลือกตั้งของสามีภรรยาที่อยู่ในเขตบางกะปี ได้ข้อมูลมาดังนี้

การออกเสียงเลี	ี	ประชาธิบัตย์	พลังใหม่	ชาทิไทย	
การออกเสียง	ประชาธิบัตย์	1586	117	49	1752
ของสามี		(1)	(.5)	(.5)	
	พลังใหม่	103	1540	40	1683
		(0)	(1)	(0)	
	ชาดิไทย	34	17	359	410
		(.5)	(.5)	(1)	
	รวม	1723	1674	448	3845

ตัวเลขในวงเล็บ () เป็นน้ำหนักถ่วง

$$\sum_{i} f_{i} \cdot f_{\cdot i} = 1752 (1723) + 1683 (1674) + 410 (448) = 6019718$$

$$\hat{x} = \frac{(1586 + 1540 + 359) - 6019718 / 3845}{3845 - 6019718 / 3845} = 0.842$$

$$\sum_{i,j} w_{ij} f_{ij} = (1) 1586 + (.5) 117 + \dots + (1) 359 = 3593.5$$

$$\sum_{i,j} w_{ij} f_i. f_{ij} = (1) (1752) (1723) + (.5) (1752) (1674) + \dots$$

$$+(1)(410)(448) = 8574975$$

$$\hat{K}_{w} = \frac{3593.5 - 8574975 / 3845}{3845 - 8574975 / 3845} = 0.844$$

สำหรับความแปรปรวนของ $\hat{\mathbf{K}}$ และ $\hat{\mathbf{K}_{\mathbf{w}}}$ เราจะได้

$$S_{\hat{K}}^2 = 0.001, S_{\hat{K}_{\mathbf{w}}}^2 = 0.0006$$

10.2 ความสมพันธ์ระหว่างตัวแบ่รแบบอันคับ (Association between Ordinal Variables)

ในกรณีตัวแปรที่สนใจตั้งแต่สองตัวขึ้นไป เมื่อต้องการศึกษาดีกรีความสัมพันธ์ ระหว่างตัวแปรเหล่านั้น โดยที่ตัวแปรแต่ละตัวให้ช้อมูลแบบอันดับเป็นอย่างน้อย **แล้ว** เรามีมากราวัคความสัมพันธ์ที่น่าสนใจหลายมากรา ซึ่งจะได้กล่าวค่อไปร่วมกับมากราวัค และแบบทคสอบอื่น ๆ ที่เกี่ยวข้องค้วย

10.2.1 สัมประสิทธิสัมพันธ์แบบอันคับของสเบียร์แมน (Spearman Rank Correlation Coefficient $ho_{\rm s}$)

มาทราวัดแบบนี้เป็นที่รู้จักกันแพร่หลาย ซึ่งสเบียร์แมน (Spearman, 1904) ได้ เสนอ์ไว้ และมักเรียกกันว่า Spearman's rho, ρ_s สัมประสิทธิ์ ρ_s นี้กำหนดไว้ว่า

$$\rho_{\rm s} = 1 - \frac{6 \sum d_{\rm i}^2}{N(N^2 - 1)}$$

ในเมื่อ $d_i = R(X_i) - R(Y_i)$, i = 1, 2, ..., N ซึ่งเป็นผลต่างของอันดับที่ในกำสังเกต ที่ เของด้วแปร X และ Y

ค่าของ $ho_{
m s}$ จะอยู่ระหว่าง -1 และ 1 นั้นคือ $-1
eq
ho_{
m s}
eq 1$

ค่าประมาณของ ho_s ประมาณได้ โดยอาศัยตัวอย่างสุ่มขนาด n กู๋ จากประชากว ที่ประกอบด้วยค่าสังเกต $(X_1, Y_1), (X_2, Y_2),, (X_n, Y_n)$ โดยที่ค่าเหล่านี้จะเป็น ตัวเลขหรือไม่เป็นตัวเลขก็ได้ เมื่อได้ $R(X_i)$ และ $R(Y_i)$ เป็นอันดับที่ของ X และ Y ซึ่ง เรียงตามลำดับจากน้อยไปมาก แล้วตัวสถิติ r_s ซึ่งเป็นตัวประมาณค่าของ ho_s จะกำหนดไว้ กังนี้

$$r_s = 1 - \frac{6 \sum d_i^2}{n(n-1)}$$

กรณีที่ค่าสังเกทของ X หรือของ Y เท่ากันแล้ว อันดับที่ซึ่งกำหนดให้นั้นจะ เป็นอันดับที่เฉลี่ย แท่ถ้ามีการเท่ากันมากจำต้องปรับปรุงตัวสถิติ r_s เป็น

$$r_{s}^{c} = \frac{\sum X^{2} + \sum Y^{2} - \sum d_{i}^{2}}{2\sqrt{(\sum X^{2})(\sum Y^{2})}}$$

ในเมื่อ
$$\Sigma X^2 = \frac{n^3 - n}{12} - \Sigma T_x$$
, $T_x = (t_x^3 - t_x) / 12$

$$\Sigma Y^{2} = \frac{n^{3} - x}{12} - \Sigma T_{y}; T_{y} = (t_{y}^{3} - t_{y}) / 12$$

โดยที่ t_x เป็นจำนวนของค่าสังเกศ x ที่เท่ากัน สำหรับอันดับที่หนึ่ง ๆ และ t_y ก็เป็น เช่นเดียวกัน ในการทคสอบอันสำคัญของ 🔩 หรือทคสอบสมมทิฐานที่ว่า

 $ext{Ho}:
ho_{ ext{s}} = 0$ หรือ $ext{Ho}: ext{X}$ กับ $ext{Y}$ เป็นอิสระกัน

 $Ha: \rho_s \neq 0$, $Ha: \rho_s > 0$, Νίτο $Ha: \rho_s \angle 0$

เราก็อาศัยก่าวิกฤตจากตาราง แต่ถ้าตัวอย่างขนาดโตเท่ากับหรือมากกว่า 10 เราใช้ตัวสถิติ ทคสอบ T

$$T = r_s / \sqrt{(1 - r_s^2)/(n-2)}$$

ซึ่งมีการแจกแจงแบบที่ (Student t) ค้วยองศาความเป็นอิสระ $\nu=n-2$

ตัวอย่าง ในการศึกษาถึงความสัมพันธ์ระหว่างคะแนนเหตุผล (x) กับผลทคสอบวิชาสถิติ (y) ได้คะแนนมาดังนี้

	•				d 2
X	Y	R _(x)	R _(y)	d	d
30	42	1.5	3	—1. 5	2.25
30	46	1.5	4	-2.5	6.25
3 5	39	3. 5	2	1.5	2.25
35	37	3.5	1	2.5	6.25
40 -	65	5	8	_3.0	9.00
45	88	6	11	-5.0	25.00
50	86	7	10	_3.0	9.00
60	56	8	6	2.0	4.00
70	62	9	7	2.0	4.00
80	92	10.5	12	1.5	2.25
80	54	10.5	5	-5. 5	30.25
90	81	12	9	3.0	9.00

109.50

$$r_s = 1 - \frac{6(109.5)}{12(12^2 - 1)} = 0.617$$

สำหรับค่ำ X เราได้ $t_1=2,\ t_2=2,\ t_3=2$

$$\Sigma T_x = \frac{1}{12} [(2^3 - 2) + (2^3 - 2) + (2^3 - 2)] = 1.5$$

$$\Sigma X^2 = (12^3 - 12) / 12 - 1.5 = 141.5$$

สำหรับค่ำ Y ไม่มีค่าเท่ากัน คังนั้น $\Sigma T_v = 0$

$$\Sigma Y^2 = (12^3 - 12) / 12 - 0 = 143$$

ทั้งนั้น
$$r_s^c = \frac{141.5 + 143 - 109.5}{2\sqrt{(141.5)(143)}} = 0.616$$

เราจะเห็นได้ว่าเมื่อมีค่า (หรืออันดับที่) เท่ากันน้อย จะทำให้ 🗝 กับ 🕵 แตก ต่างกันเล็กน้อยเท่านั้น ฉะนั้นจะใช้ 🛣 ก็ต่อเมื่อมีค่าหรืออันดับที่เท่ากันมาก ๆ

เมื่อทุกสอบนัยสำคัญของ r_s เราสรุปโดยอาศัยการางได้ว่า r_s มีนัยสำคัญที่ $\alpha=.05$ หรือ $\mathbf{Ha}: \rho_s \neq 0$ น่าจะเป็นจริงนั้นเอง

สำหรับก่าประมาณแบบช่วงของ $ho_{
m s}$ จะหาได้โดยอาศัยตัวแปลงพีชเชอร์ (Fisher Z) ที่กำหนดไว้ว่า

$$Z(r_s) = \tanh^{-1} r_s = \frac{1}{2} \ln (1 + r_s) (1 - r_s)$$

และสมมทิว่าตัวอย่างสุ่มมาตราประชากรแบบปกติชนิดสองตัวแปร นั้นคือช่วงเชื่อมั่น $100~(1-\alpha)$ % สำหรับ $Z(\rho_s) = an h^{-1}
ho_s$ กำหนดไว้ว่า

$$Z(\rho_s) = Z(r_s) + Z_{\alpha/2}\sigma_{z(r_s)}$$

ในเมื่อ $\delta_{Z(rs)}=1.03$ / $\sqrt{n-3}$ จากช่วงเชื่อมั่นของ $Z(\rho_s)$ เราสามารถแปลงกลับไปสู่ ช่วงเชื่อมั่นของ ρ_s ได้

กังนั้นเมื่อต้องการทคสอบสมมติฐานเกี่ยวกับค่าเฉพาะของ ho_s คือ ho_{so} เราก็ใช้ตัว สถิติทคสอบ z

$$Z = \frac{Z(r_s) - Z(\rho_s)}{1.03/\sqrt{n-3}}$$

ซึ่งมีการแจกแจงปกติมาตรฐาน N(0, 1)

บางครั้งเราต้องการเปรียบเทียบสองสัมประสิทธิ์สหสัมพันธ์แบบอันดับจากสอง ประชากรซึ่งมีข้อจำกัดว่าเป็นประชากรแบบปกติ นั้นคือสมมติฐานหลักจะเป็น

$$Ho: \rho_{s_1} - \rho_{s_2} = \rho_o$$

เราก็อาศัยทั่วสถิติทุกสอบ Z ซึ่งมีการแจกแจงปกติมาตรฐาน N (0, 1) และ Z กำหนดไว้ว่า

$$z = (d - z(\hat{\rho}))/\sigma_d$$

luido d =
$$Z(r_{s_1}) - Z(r_{s_2})$$
; $Z(\rho_0) = Z(\rho_{s_1}) - Z(\rho_{s_2})$; C_d
= $\sqrt{1.03/(n_1-3)} + \sqrt{1.06/(n_2-3)}$; n_1 , $n_2 \ge 10$

10.2.2 สมประสิทธิ์สัมพันธ์แบบอันคับของเคนคาลล์ (Kendall Rank Correlation Coefficient, ho)

เคนดาลล์ปี (1938) ได้เสนอมาตราวัดสหสัมพันธ์ที่เรียกว่า Kendall's ซ ไว้ ซึ่งเป็นมาตราวัดแบบอาศัยอันดับที่ มาตราวัด ซ นี้เป็นที่รู้จักและนิยมใช้กันพอสมควร

ค่าของ τ จะอยู่ระหว่าง -1 และ 1 เช่นเคียวกับ ρ_s คัวประมาณค่าของ τ จะได้เป็น $\hat{\tau}$ สำหรับ τ นั้นกำหนดในเทอมของการสอดคล้องและการไม่สอดคล้อง (Concordance and Disconcordance) นั้นคือ

$$\tau = P_c - P_d$$

ในเมื่อ P. เป็นความน่าจะเป็นของการสอดคล้อง และ P. เป็นความน่าจะเป็น ของการไม่สอดคล้อง

ค่าสังเกศ (X_i, Y_i) กับ (X_j, Y_j) จะเรียกว่าสอดคล้องกัน ถ้าผลท่างระหว่าง X_i กับ X_j มีทิศทางเช่นเคียวกับผลท่างระหว่าง Y_i กับ Y_j หรือกล่าวได้อีกอย่างว่า ถ้า X_i $> X_j$,: $Y_i > Y_j$ หรือ $X_i < X_j$ และ $Y_i < Y_i$ แล้วจะเรียกว่าสอดคล้องกัน ส่วนค่า สังเกศ (X_i, Y_i) กับ (X_j, Y_j) จะเรียกว่าไม่สอดคล้องกันถ้าทิศทางของผลท่างไม่เป็นแบบ เดียวกัน

ก้า (X_1, Y_1) $(X_2, Y_2),.....$, (X_n, Y_n) เป็นค่าสังเกทของตัวอย่างกับขนาด n จากประชากรชนิดสองตัวแปร (X, Y) ที่มีสเกลการวัดในค่าสังเกทเป็นแบบอันดับอย่าง น้อย แล้วเราสามารถหาตัวสถิติ $\hat{\tau}$ ซึ่งเป็นมาตราวัดความสัมพันธ์ระหว่างตัวแปร X และ Y ได้ตั้งนี้

- (1) เรียกค่าสังเกต (X_i, Y_i) คามขนาดของ X โดยให้ค่าน้อยของ X เป็น อับกับ 1 ค่าน้อยรองไปเป็นอันดับ 2 และค่อ ๆ ไป สำหรับค่าของ Y จะตามค่าของ X ดัง นั้น X จะอยู่ในลำดับธรรมชาติ (Natural Order)
- (2) เปรียบเทียบค่า Y เป็นคู่ด้วยกันจำนวน $\binom{n}{2} = n (n-1)/2$ ครั้ง โดย เริ่มต้นจากค่า Y ที่คู่กับ X ที่มีอันดับเป็น 1 ฉ้าค่า Y ที่นำไปเปรียบเทียบนั้นน้อยกว่าค่า Y ที่คู่กับค่า X อันดับสูง เราจะเรียกว่าคู่ของค่า Y นั้นอยู่ในลำคับธรรมชาติ แต่ถ้ามากกว่า ก็แสดงว่าคู่ของค่า Y นั้นไม่อยู่ในลำดับธรรมชาติ (Reverse natural order)
- (3) ให้ f_c เป็นจำนวนคู่ของลำดับธรรมชาติ และ f_d เป็นจำนวนค่าของลำดับ ไม่เป็นธรรมชาติ และให้ $S=f_c-f_d$

เทนดาวล์แสดงให้เห็นว่าค่าที่มากที่สุดของ S จะเท่ากับ n (n-1)/2 และได้ กำหนดสถิติ $\hat{\tau}$ ไว้ดังนี้

$$\hat{\tau} = \frac{\text{ก่าของ S ที่สังเกทได้}}{\text{ก่าที่มากสุดของ S}} = \frac{\text{S}}{n (n-1)/2}$$

ถ้าค่าของ Y เรียงลำคับตาม X เราจะได้ค่า S สูงสุดคือ S = n (n-1)/2 คังนั้น $\hat{\tau}=1/r$ ซึ่งแสดงว่ามีสหสัมพันธ์ทางตรงอย่างสมบูรณ์ แต่ถ้าค่าของ Y เรียงลำคับกลับกับของ X เราจะได้ค่า S สูงสุด แต่เป็นลบนั้นคือ S = - n (n-1)/2 ซึ่งจะได้ค่า $\hat{\tau}=-1$ ซึ่งแสดงว่ามีสหสัมพันธ์ทางกลับกันอย่างสมบูรณ์ คังนั้นค่าของ $\hat{\tau}$ จึงอยู่ระหว่าง -1 กับ 1

ในการทดสอบนัยสำคัญของ 🙃 หรือทกสอบความเป็นอิสระของ 🗴 แล**ะ Y นั่น** คือสมมทิฐานหลักที่จะทคสอบจะเป็น Ho: τ = O หรือ Ho: X กับ Y เป็นอิสระกัน เกณฑ์ตัดสินใจกำหนดค่าวิกฤต ไว้ในตาราง

เคนคาวล์ (1948) แสดงไว้ว่าเมื่อ $n \ge 8$ การแจกแจงตัวอย่างของ $\widehat{\tau}$ จะไม่ แตกต่างจากการแจกแจง แบบปกติโดยมีค่าเฉลี่ย และความแปรปรวนดังนี้

$$\mathbf{E}(\hat{\tau}) = 0$$

 $\mathbf{V}(\hat{\tau}) = 2(2n+5)/9n(n-1)$

คังนั้นในการทคสอบนับสำคัญของ 🙃 จึงใช้ตัวรวมทคสอบ

$$Z = \frac{\hat{\tau} - E(\hat{\tau})}{\sqrt{V(\hat{\tau})}}$$

ซึ่งมีการนิจกแจงปกติมาตรฐาน n (0, 1) หรือใช้ตัวรหัส s โดยตรงก็ได้โดยแก้ไขความ ต่อเนื่องดังนี้

$$Z_o = \frac{|s|-1}{\sqrt{n(n-1)(2n+5)/18}}$$

ซึ่งมีการแจกแจงปกติมาตรฐาน N (0, 1)

กรณีที่ค่าสังเกทเท่ากัน เราปรับปรุงค่าของ 🕆 ได้เป็น

$$\hat{\tau} = \frac{S}{\sqrt{n (n-1)/2 - T_x} \sqrt{n (n-1)/2 - T_y}}$$

ในเมื่อ $T_x = \frac{1}{2} \sum t_x (t_x - 1)$ และ $T_y = \frac{1}{2} \sum t_y (t_y - 1)$ โดยที่ t_x และ t_y เป็น จำนวนของค่าสังเกศ X และ Y มีเท่ากันสำหรับอันคับที่กำหนดไว้

เมื่อการเท่ากันเกิดขึ้นเฉพาะค่า x (ไม่เกิดในค่า y) หรือเฉพาะค่า y (ไม่เกิด ในค่า x) แล้วความแปรปรวนของ s จะเป็น

 $v(s) = \frac{1}{18} \left[n (n-1) (2 n + 5) - \sum t (t-1) (2 t + 5) \right]$ แต่ถ้าการ เท่ากันเกิดขึ้นท ้ำค่า x และค่า y แล้วความแบ่รบรวนของ s จะเป็น

$$V(S) = (1/18) \left\{ n(n-1)(2n+5) - \sum_{x} t_{x}(t_{x}-1)(2t_{x}+5) - \sum_{y} t_{y}(t_{y}-1)(2t_{y}+5) \right\}$$

$$+ (1/9n(n-1)(n-2)) \left\{ \sum_{x} t_{x}(t_{x}-1)(t_{x}-2) \right\} \left\{ \sum_{y} t_{y}(t_{y}-1)(t_{y}-2) \right\}$$

$$+ (1/2n(n-1) \left\{ \sum_{x} t_{x}(t_{x}-1) \right\} \left\{ \sum_{y} t_{y}(t_{y}-1) \right\}$$

ตัวอย่าง นักภาษาศาสตร์ได้เสนอวิธีปรับปรุงการอ่านภาษาไทย จากการทดลองกับเด็ก นักเรียน 10 คน ได้คะแนนการอ่านที่เพิ่มขึ้น (x) และเชาว์บัญญา (y) ดังนี้

96

จากการางเมื่อ $\alpha=.05$ และ n=10 เราได้ค่าวิกฤตเป็น 0.511 ซึ่งมากกว่า \widehat{r} ดังนั้น จึงปฏิเสธ Ho ไม่ได้ แสดงว่าคะแนนการอ่านที่เพิ่มขึ้นไม่มีความสัมพันธ์กับเชาว์บัญญา

ถ้าเกิดการเท่ากันในค่าของ X และในค่าของ Y มาก ๆ หรือถ้าค่าของ X และ Y เป็นประเภทเชิงอันดับ (Ranked Categories) แล้ว เราสามารถสร้างการางความถี่แบบ 2 ทางของค่า X และ Y ได้ดังนี้

_	Y	j	Y_1	$\mathbf{Y_2}$		Y _c	รวม (R _i)
	X _i	$\mathbf{X_1}$	f ₁₁	f ₁₂		f_{1c}	R ₁
		X_2	f ₁₁ f ₂₁	f ₂₂		f _{2c}	R ₁ R ₂
					$\mathbf{f_{ij}}$		
			f _{rl}	f_{r2}		frc	R _r
_	รวม	(C _j)	C_1	C ₂		Cc	$n = \sum f_{ij}$

ในเมื่อ $X_1 < X_2 < ... < X_r$ และ $Y_1 < Y_2 < ... Y_c$; f_{ij} เป็นความถี่ในค่าที่ i ของ X และมีค่า j ของ Y; R_i และ C_j เป็นผลรวมของความถี่ ในค่า X ที่ i และค่า Y ที่ j, (i=1,2,...,r และ j=1,2,...,C)

สำหรับค่าของ f_c, f_d และ S หาใค้คังนี้

$$(1) \cdot f_c = \sum_{i, i} a_{ij}$$

= ความถี่ (i, j) {ผลรวมของความถี่ที่อยู่ให้และขวามือของความถี่ (i, j)}

ในเมื่อ
$$a_{ij} = f_{ij} \left\{ \sum_{i, j} f_{i+1, j+1} \right\}$$
 (2) $f_d = \sum b_{ij}$

= ความถี่ (i, j) [ผลรวมของความถี่ที่อยู่เหนือและขวามือของความถึ่ (i, j)]

ในเมื่อ
$$b_{ij} = f_{ij} (\sum_{i,j} f_{i-1,j+1})$$
 (3) $S = f_c - f_d$

คังนั้นสมประสิทธิ์สหสัมพันธ์แบบอันคับของเคนคาลล์ ที่ยังไม่ปรับปรุงกรณีเท่า กัน ซึ่งจะได้เป็น วิ๋ จะกำหนดไว้คังนี้

$$\widehat{\tau}_a = \frac{S}{n(n-1)/2}$$

เมื่อปรับปรุงกรณีการเท่ากันจะได้ 🕝 ถังนี้

$$\hat{\tau}_{b} = \frac{S}{\sqrt{\frac{1}{2}(n^{2} - \Sigma R_{i}^{2})} \sqrt{\frac{1}{2}(n^{2} - \Sigma C_{j}^{2})}}$$

$$= \frac{2 S}{\sqrt{(n^{2} - \Sigma R_{i}^{2}) (n^{2} - \Sigma C_{i}^{2})}}$$

เป็นที่น่าสังเกตว่า $\hat{\tau}_b$ นี้จะเท่ากับ Pearson's r ถ้าประยุกศ์กับศารางความถี่ลองทางชนิด 2 x 2

ตัวอย่าง ในการศึกษาถึงชนชั้นทางสังคม (x) และการหนึ่งาน (y) ของข้าราชการกรม หนึ่ง ได้ข้อมูลซึ่งเป็นจำนวนคนมาคังนั้

การหนึ่งาน (Y)	Y ₁ : น้อย	Y ₂ : ปานกลาง	Y ₃ : มาก	รวม
ชนชั้นทางสังคม $X_1: \hat{m{n}}$ ำ (X)	2	2	6	10
$\mathbf{X_2}$: กลาง	2	6	2	10
X ₃ : สูง	5	3	2	10
รวม	9	11	10	30

เราคำนวณค่า f_c, f_d และ s ไก้กังนี้

 a_{ij} : แถวนอนแรก 2(6+2+3+2), 2(2+2), 6(0)

: แถวนอนที่สอง 2(3+2), 6(2), 2(0)

: แถวนอนที่สาม 5 (0), 3 (0), 2 (0) (แถวนอนสุดท้ายไม่จำเป็นต้องคำนวณ ค่า a_{ii} เพราะจะเป็นศูนย์หมด)

ทั้งนั้น
$$f_c = \sum a_{ij} = 2(13) + 2(4) + 6(0) + 2(5) + 6(2) + 2(0)$$

= $26 + 8 + 0 + 10 + 12 + 0 = 56$

 $\mathbf{b_{ij}}$: แถวนอนแรก 2(0), 2(0), 6(0) (ไม่จำเป็นต้องคำนวณ)

: แถวนอนที่สอง 2(2+6), 6(6), 2(0)

: แถวนอนที่สาม 5 (6 + 2 + 2 + 6), 3(2 + 6) + 2 (0)

ทั้งนั้น
$$f_d = \sum U_{ij} = 2(8) + 6(6) + 2(0) + 5(16) + 3(8) + 2(0)$$

= $16 + 36 + 0 + 80 + 24 + 0 = 156$

สำหรับ $\hat{\tau_a}$ และ $\hat{\tau_b}$ คำนวณไก้คังนี้

$$\hat{\tau}_{a} = \frac{-100}{30(29)/2} = -.23$$

$$\hat{\tau}_{b} = 2(-100)/\sqrt{30^{2} - (10^{2} + 10^{2} + 10^{2})} \{30^{2} - (9^{2} + 11^{2} + 10^{2})\}$$

$$= -.33$$

โนเธอร์ (Noether, 1976) ได้เสนอวิธีสร้างช่วงเชื่อมั่นสำหรับ ซ ไว้ แต่จะกล่าว เฉพาะกรณีที่ตัวแปร X และ Y ไม่มีค่าที่เท่ากัน เพราะกรณีที่ค่าเท่ากันสูตรจะยุ่งยาก ช่วง เชื่อมันสำหรับ ซ ที่ในเธอร์เสนอไว้ก็คือ

$$\tau = \hat{\tau} \pm Z_{\alpha/2} \left(\frac{2}{n(n-1)} \right) \hat{\sigma}$$

ในเมื่อ $\hat{\sigma}^2 = 4 \sum C_i^2 - 2 \sum C_i - 2 (2n-3) (\sum C_i^2) / n (n-1) โดยที่ <math>C_i$ เป็นจำนวน ค่าสังเกต (X_i, Y_i) ที่สอดคล้องกับค่าสังเกต (X_i, Y_i) เนื่องจากค่าสังเกต (X_i, Y_i) ต้อง เปรียบเทียบเพื่อหาความสอดคล้องกับค่าสังเกตอื่น ๆ (X_i, Y_i) จำนวน (n-1) ครั้ง เรา จึงมีจำนวนการเปรียบเทียบทั้งหมดเป็น n(n-1)

พวอย่าง ในการศึกษาถึงความสัมพันธ์ระหว่างบุคคลิกภาพของบุคคล 2 ประเภท คือการ ยอมจำนนต่ออิทธิพลของกลุ่ม (x) และการแสวงหาสถานภาพทางสังคม (y) โดยอาศัย ตัวอย่างของนักศึกษา 11 ราย จากการวัดบุคคลิกภาพทั้งสอง (x, y) ได้ข้อมูลมาดังนี้

$$X$$
 | 2 3 4 5 6 7 8 9 10 11 Y | 42 46 39 37 65 88 86 56 62 92 เราหาค่า f_c , f_d และ S ได้ดังนี้ $f_c = 8+7+7+7+3+1+1+3+1+0=38$ $f_d = 2+2+0+3+4+3+1+1+1=17$ $S = f_c-f_d = 38-17=21$ $\hat{\tau} = \frac{21}{11(10)/2}=0.38$

เมื่อหาค่า C_i (i=1,2,...,n) จะได้เป็นคังนี้ $C_1=1+0+0+1+1+1+1+1+1+1+1=8$ $C_2=1+0+0+1+1+1+1+1+1+1+1=8$ $C_3=0+0+0+1+1+1+1+1+1+1+1=7$ $C_4=7, C_5=7, C_6=6, C_7=6$ $C_8=6, C_9=6, C_{10}=9, C_{11}=4$ $\hat{\sigma}^2=4\sum_{i,j}^2-2\sum_{i,j}C_{i}-2(2n-3)(\sum_{i,j}C_{i}^2)/n(n-1)=4(516)-2(74)-2(22-3)(516)/11(10)=1699.7455$

$$\hat{\sigma} = 41.228$$

กังนั้นช่วงเชื่อมั่น 95 % สำหรับ ₇ จะเป็น

$$\tau = \hat{\tau} \pm Z_{.025} \left(\frac{2}{11(10)}\right) (41.228)$$
$$= 0.38 \pm 1.96 (0.7496)$$
$$= 0.38 \pm 1.469$$

ซึ่งแสดงว่าตัวแปรทั้งสองไม่สัมพันธ์กัน (เพราะ r คาบเกี่ยว 0 ไว้ด้วย)
ข้อสังเกต (1) การเลือกใช้ระหว่าง r_s และ r ซึ่งทั้งสองต่างก็เป็นมาตราวัดความสัมพันธ์
ระหว่างตัวแปรอันดับด้วยกันนั้น เรามีเกณฑ์ในการเลือกใช้ดังนี้

- ก. เมื่อคำนวณด้วยมือ แล้ว *ะ* ิจะลำบากกว่า r_s
- ข. การแจกแจงของ กิ จะเข้าใกล้การแจกแจงแบบปกติได้เร็วกว่าการแจก แจงของ r_s คังนั้นเมื่อใช้การประมาณค่าแบบปกติด้วยตัวอย่างขนาดปานกลาง แล้วก็ควรใช้ กิ เพราะน่าจะเชื่อมั่นได้มากกว่า
- ค. ในการทคสอบสมมทิฐานด้วยตัวสถิติทั้งสองจะให้ค่าประสิทธิภาพสัม-พัทธ์แบบตัวอย่างขนาดโต (Asymptotic Relative Efficiency, ARE) เหมือนกัน เมื่อ เทียบกับแบบทคสอบเพียร์สัน (Pearson Test) ที่ไว้ใจได้ (Valid)
- ง. โดยทั่วไปเมื่อคำนวณ r และ z ิ จากข้อมูลเดียวกันจะให้ค่าเท่ากัน แต่ ในการทดสอบสมมติฐานจะได้ผลการตัดสินใจเหมือนกัน

- จ. ๕ ถือได้ว่าเป็นทั่วประมาณค่าของพารามิเทอร์ประชากร แต่ 🔩 ไม่เป็น เช่นนั้น ดังนั้นการใช้ ๕ จึงน่าจะเป็นที่สนใจมากกว่า
- (2) ตัวสถิติ $\hat{\tau}$ และ r_s ต่างก็สามารถใช้ทุกสอบแนวโน้ม (Tests for Trend) ได้ ซึ่งเป็นอีกแบบหนึ่งของแบบทุกสอบคอกซ์—สจวร์ท (Cox-Stuart Test for Trend) ที่จะกล่าวต่อไปในข้อมูลอนุกรมเวลา (Time Series data) ถ้าให้ X เป็นตัวแปรเวลา และ Y เป็นข้อมูลที่สอกคล้องกับ X โดยมีสเกลการวัดอย่างน้อยแบบอันดับ ถ้า X กับ Y มีความสัมพันธ์กันทางตรงจริง โดยการทุกสอบความสัมพันธ์ด้วยตัวสถิติ $\hat{\tau}$ หรือ r_s แล้วก็จะถือว่าข้อมูลมีแนวโน้มเพิ่มขึ้น (Upward Trend) แต่ถ้ามีความสัมพันธ์ผูกผันก็ ถือว่าข้อมูลมีแนวโน้มลดลง (Downward Trend)
- (3) สำหรับตาราง 2×2 เราจะได้ว่า $\left| \hat{\tau_b} \right| = \phi$ แต่ $\hat{\tau_b}$ จะให้ค่าที่มีเครื่องหมายกำกับด้วย

10.2.3 สัมประสิทธิ์ความเกี่ยวพันเชิงอันคับบองกูคแมนและครัสคัล (Goodman and Kruskal's Coefficient of Order Association, Gamma 7)

กูดแมนและครัสคัล (1954, 1963) ได้เสนอมาตราวัดความเกี่ยวพันสำหรับตาราง จรณ์แบบอันดับ (Ordered Contingency Tables) ซึ่งเรียกว่า แกมมะ ชี มาตราวัดนี้ คล้ายกับของเคนดาลล์ ๔ แต่การหาการสอดกล้องนั้นต้องพิจารณาถึง n² คู่ หรือเป็น การเปรียบเทียบเป็นคู่ชนิดแทนที่ ในเมื่อการสอดกล้องของเคนดาลล์พิจารณาเพียง (n₂) คู่ หรือเป็นการเปรียบเทียบเบ็นคู่ชนิดไม่แทนที่ กูดแมนและครัสกัลได้กำหนด ชี ไว้ดังนี้

$$\mathcal{T} = \frac{P_c - P_d}{c + PP_d}$$

ในเมื่อ P_c และ P_d เป็นโอกาสที่คู่เปรียบเทียบจะสอกคล้องและไม่สอกคล้องกัน สำหรับคัวอย่างเราได้คัวประมาณค่าของ 7 เป็น G และกำหนดไว้ดังนี้

$$G = \frac{f_c - f_d}{f_c + f_d}$$

ในเมื่อ f_c และ f_d เป็นจำนวนกู่ที่สอกกล้องและไม่สอกกล้องกัน

ในกรณีที่ไม่มีอันดับที่เท่ากัน แล้ว $f_c + f_d = n (n-1)/2$ แล้วเราจะได้ว่า $\sigma = \tau$ และถ้าจำนวนคู่ที่เท่ากันมีมาก แล้ว $\sigma = \tau$ จะมากกว่า τ มาก ๆ

ในการกำนวณค่า G นั้น เราอาศัยวิธีการคำนวณ รู และ รู แบบเคนคาลล์ ซึ่งเป็นการเปรียบเทียบเป็นชนิคไม่แทนที่ ค่า G ที่กำนวณแบบนี้จะเป็นเช่นเคียวกับ ถ้านวณ รู และ รู แบบแทนที่หรือแบบกูดแมนและคริสคัล ทั้งนี้ก็เพราะ รู และ รู แบบ กูดแมนและคริสคัลจะเป็น 2 เท่าของแบบเคนคาลล์

ตัวอย่าง ในการศึกษาถึงความสัมพันธ์ระหว่างทัสนคติ 2 ประเภทของนักศึกษากลุ่มหนึ่ง โดยรวม**ตั**วอย่างของนักศึกษา 100 ราย ได้ข้อมูลมาดังนี้

	ทั ชนคติ			ค	J	ววม
ทัศนคติ	ก	7	1	8	6	22
	ข	2	8	10	5	25
	ค	14	8	2	4	28
_	่ง	10	12	. 2	1	25
	ราม	33	29	22	16	100

ในเมื่อ ก : ไม่เห็นด้วยอย่างมาก

ข : ไม่เห็นค้วย

ค : เห็นค้วย

ง : เห็นค้วยอย่างมาก

เราหา f_c และ f_d ไก้คังนี้

$$f_c = 7 (52) + 1 (24) + 8 (10) + 6 (0)$$

+ 2 (29) + 8 (9) + 10 (5) + 5 (0)
+ 14 (15) + 8 (3) + 2 (1) + 4 (0)

- 884

$$f_d = 2 (15) + 8 (14) + 10 (6) + 5 (0)$$

+ 14 (38) + 8 (29) + 2 (11) + 4 (0)
+ 10 (52) + 12 (35) + 2 (15) + 1 (0)

$$=$$
 1958 $G = \frac{f_c - f_d}{f_c + f_d} = \frac{884 - 1589}{884 + 1958}$

$$= -1074 / 2842 = -0.378$$

$$\hat{\tau}_{a} = -0.217, \quad \hat{\tau}_{b} = -0.291$$

, เราจะเห็นได้ว่าเมื่อค่าสังเกตเท่ากันแล้ว $|G| > |\hat{\tau}|$ นั้นคือ |-0.378| > |-0.217| หรือ |-0.291|

ในปี ค.ศ. 1963 กูลแมนและคริสคัลได้เสนอความคลาดเคลื่อนมาตรฐานของ G เมื่อตัวอย่างขนาดโตไว้ แต่เนื่องจากการคำนวณยุ่งยาก เขาจึงใช้ค่าที่สูงสุดหรือ max S_G ซึ่งง่ายกว่าการคำนวณ สำหรับ max S_G นี้ขึ้นอยู่ภับการสุ่มตัวอย่างแบบแทนที่และกำหนด ไว้ดังนี้

$$\max_{\mathbf{S}_{G}} \ S_{G}^{2} \ = \ Z \ n \ (1-d^{2}) \ / \ (n^{2}-f_{t})$$
 ในเมื่อ $f_{t} = n^{2} - z \ (f_{c} + f_{d})$

กังนั้นในการทุกสอบมาครฐานเกี่ยวกับค่าของ 7 หรือ 7 หรือในการประมาณ ค่าของ 7 เราอาศัยตัวสถิติ

$$Z = \frac{q - 7}{\sqrt{\max S_G^2}}$$

ซึ่งมีการแจกแจงปกติสมติฐาน N (0,1) นั้นคือในการทคสอบสมมติฐานเกี่ยวกับค่าของ T หรือ To เราใช้ตัวอาศัยทคสอบ

$$Z = \frac{G - \mathcal{T}_o}{\sqrt{\max S_G^2}}$$

และช่วงเชื่อมั่นประมาณ 100 (1 – α) % สำหรับ ४ จะเป็น

$$\mathbf{7} = \mathbf{G} + \mathbf{Z}_{\alpha/2} \sqrt{\max \mathbf{S}_{\mathbf{G}}^2}$$

คัวอย่าง จากทั่วอย่างที่ผ่านมา ถ้าเราท้องการทกสอบนัยสำคัญของ G หรือทคสอบสมมทิ ฐานที่ว่า

$$H_o: \mathcal{T} = O; H_a: \mathcal{T} = O$$

เราทำใก้กังนี้

$$\max S_G^2 = 2 n (1 - G^2) / (n^2 - f_t)$$

$$= 2 (100) [1 - (-0.378)^2] / (100^2 - 4316).$$

$$= 0.0302$$

$$\sqrt{\max S_G^2} = 0.173$$

 $f_t = n^2 - 2 (f_c + f_d) = 100^2 - 2 (884 + 1958) = 10000 - 5684 = 4316$

$$Z = \frac{-0.378 - 0}{0.173} = -2.18$$

เมื่อใช้ระดับนัยสำคัญ lpha=0.05 ค่าวิกฤทเป็น $Z_{.025}=-1.96$ จึงปฏิเสธ H_o แสดงว่า ตัวแปรทั้งสองมีความเกี่ยวพันกัน

ถ้าต้องการประมาณช่วงเชื่อมั่น 95% สำหรับ 7 จะได้เป็น

$$\Upsilon = G_{-}^{+}Z_{.025} \sqrt{\max S_{G}^{2}}$$

$$= -0.378_{-}^{+} (1.96) (0.173) = -0.378_{-}^{+} 0.339$$

$$= -.717, -.039$$

ถ้ามีประชากรที่สนใจสองประชากร เราก็สามารถทดสอบสมมทิฐานหรือประมาณ ค่าของผลท่าง $\mathfrak{T}_1-\mathfrak{T}_2$ ได้โดยอาศัยทัวสทิถิทคสอบ

$$Z = \frac{(G_1 - G_2) - (\mathbf{r}_1 - \mathbf{r}_2)}{\sqrt{\max S_{G_1}^2 + \max S_{G_2}^2}}$$

ชึ่งมีการแจกแจงปกติมาตรฐาน N (0, 1) สำหรับตัวอย่างทั้งสองที่สุ่มมาจากประชากรทั้ง สองนั้นจะต้องเป็นอิสระกัน คังนั้นสมมติฐานหลักเกี่ยวกับผลต่างของความเกี่ยวพันของ สองประชากรจะเป็น

$$H_0: \mathcal{T}_1 - \mathcal{T}_2 = \mathcal{T}_0$$

ในการทคลอบสมมติฐานนี้จะอาศัยตัวสถิติทคลอบ z

$$Z = \frac{(G_1 - G_2) - \mathcal{T}_o}{\sqrt{\max S_{G_1}^2 + \max S_{G_2}^2}}$$

luino
$$\max S_{G_1}^2 = 2 n_1 (1-G_1^2) / (n_1^2 - f_{t_1}^2)$$

max
$$S_{G_2}^2 = 2 n_2 (1 - G_2^2) / (n_2^2 - f_{t_2}^2)$$

และช่วงเชื่อมั้น 100 ($1-\alpha$) % (โดยประมาณ) ของ ${\mathfrak T}_1-{\mathfrak T}_2$ จะเป็น

$$\eta_1 - \eta_2 = (G_1 - G_2) + Z_{\alpha/2} \sqrt{\max S_{G_1}^2 + \max S_{G_2}^2}$$

ตัวอย่าง ในการศึกษาพนักงาน 2 ประเภท คือประเภทใช้มือ และประเภทใช้เครื่องจักร เมื่อเปรียบเทียบความสัมพันธ์ระหว่างการขาดงาน และอายุการทำงาน ได้ข้อมูลมาดังนี้

,	n	นงานใช้มือ		กนงานใช้เครื่องจักร			
การขาคงาน	น้อย	ปานกลาง	้มาก	น้อย	ปานกลาง	มาก	
อายุทำงาน (ปี่) 0 – 4.9	10	0	5	. 6	4	5	
5 - 9.9	1	12	2	5	. 8	2	
10 — 14.9	1	. 8	1	3	2	15	
15 —	3	0	17	1	6 v.	- 3	

จากการคำนวณตัวสถิติต่างๆ ที่เกี่ยวข้องโดยเป็นดังนี้

ประเภทกนงานใช้มือ : $f_c = 795$ $f_d = 224$ $f_t = 1562$

$$G_1 = \frac{795 - 224}{795 + 224} = 571 / 1019 = 0.56$$

max
$$S_{G_1}^2 = 2 (60) [1 - .56^2] / (60^2 - 1562) = .04$$

ประเภทคนงานใช้เครื่องจักร : $f_c=603,\ f_d=324,\ f_t=1746$

$$G_2 = \frac{603 - 324}{603 - 324} = 0.30$$

max $S_{G_2}^2 = 2 (60) [1 - .30^2] / (^2 - 1746) = .06$

ถ้าเราต้องการทคสอบสมมติฐานที่ว่า

$$H_o: \Upsilon_1 - \Upsilon_2 = O; Ha; \Upsilon_1 - \Upsilon_2 \neq O$$

เราคำนวณค่าตัวสมมติทคสอบได้เป็น

$$Z = \frac{(.56 - .30) - 0}{\sqrt{.04 + .06}} = 0.26 / \sqrt{.10} = 0.81$$

ซึ่งแสดงว่าความสัมพันธ์ของทั้งสองกลุ่มเกี่ยวกับการขาดงานและอายุการทำงานเท่ากัน (ค่า วิกฤๆสำหรับ lpha=.05 จะเป็น $Z_{.025}=1.96$)

บ้อสังเกต สำหรับการางจรณ์ 2 + 2 นั้นค่าของ G และ Q จะมีค่าเท่ากัน ความจริง G เป็นรูปทั่วไปของ Q สำหรับการางจรณ์แบบอันคับ (Ordinal — Ordinal Contingency Table) ที่มีจำนวนแถวนอนและแถวทั้งก่าง ๆ

$$Q = \frac{f_{11} f_{22} - f_{12} f_{21}}{f_{11} f_{22} + f_{12} f_{21}} = \frac{f_{c} - f_{d}}{f_{c} + f_{d}}$$

ในเมื่อ f_{ij} (i=1,2) เป็นความถึ่งากตาราง 2×2 คังนี้

$$egin{array}{c|cccccc} Y & Y_1 & Y_2 & \Im \mathbb{N} \\ \hline X & X_1 & f_{11} & f_{12} & f_1. \\ \hline & X_2 & f_{21} & f_{22} & f_2. \\ \hline & \Im \mathbb{N} & f_{\cdot 1} & f_{\cdot 2} & n. \\ \hline \end{array}$$

โดยมี $\mathbf{X_1} < \mathbf{X_2}$ และ $\mathbf{Y_1} < \mathbf{Y_2}$

10.2.4 สัมประสิทธิ์ความเกี่ยวพันธ์อื่นๆ ที่ปรับปรุงจากตัวสถิติเคนคาลล์ (Another Modifications of Kendall's Tau)

นอกจาก ลูกแมนและคริสคัล ได้ปรับปรุงทัวสถิติเคนดาลล์แล้ว ยังมีสจาร์ท (Stuart, 1953), ซอมเมอร์ส (Somers, 1962) และคนอื่นๆ อีก ที่ได้ปรับปรุงทัวสถิติ เคนดาลล์ สจาร์ทได้ปรับปรุงส่วนของ \hat{r} เพื่อทำให้ \hat{r}_b มีค่าสูงสุดเป็น 1 หรือ -1 (เพราะถ้าจำนวนแถวนอนไม่เท่ากับจำนวนแถวตั้ง หรือ $r \neq c$ แล้ว \hat{r}_b จะไม่เป็น 1 หรือ -1) โดยเสนอมาทราวัก \hat{r}_c ไว้ดังนี้

$$\hat{\tau}_{c} = \frac{2S}{\frac{2}{n}(m-1)/m}$$

ในเมื่อ m = min (r, c)

จากตัวอย่างของการหนึ่งานและชนชั้นทางสังคม เราหา 🚓 ได้เป็น

$$\tau_{\rm c} = \frac{2(56-156)}{30^2(3-1)/3} = -.33$$

ชอมเมอร์ ได้เสนอมาตราวัด แบบไม่สมมาตรไว้ โดย เน้นคุณ ลักษณะที่สำคัญ ของ ตัวสถิติ s ที่ว่าจำนวนในความรู้ ของ x จะแสดงถึงความรู้ เกี่ยวกับ Y เช่นเดียวกับจำนวน ความรู้ เกี่ยวกับ Y จะแสดงถึงความรู้ เกี่ยวกับ x ตัวอย่าง เช่น s ที่เป็นบวกจะซี้ว่าจำนวนที่ มากกว่าของการเปรียบเทียบ มีคุณลักษณะที่ว่า ถ้า $x_1 < x_2$ แล้ว $Y_1 < Y_2$ หรือถ้า $X_1 > x_2$ แล้ว $Y_1 > Y_2$ และยังชี้ว่าจำนวนมีมากกว่าของการเปรียบเทียบมีลักษณะที่ว่า ถ้า $Y_1 < Y_2$ แล้ว $X_1 < X_2$ หรือถ้า $Y_1 > Y_2$ แล้ว $Y_1 > Y_2$ ก้วยคุณสมบัติที่สำคัญของ s เช่นนี้ ซอมเมอร์สจึงได้เสนอมาตราวัดไว้ 2 แบบดังนี้

(1)
$$d_{yx} = \frac{S}{(n^2 - \sum n_i^2)/2}$$

ในเมื่อ d_{yx} เป็นสัมประสิทธิ์ความเกี่ยวพันที่แสดงว่าจำนวนในความรู้เกี่ยวกับตัวแปรอิสระ x จะหมายถึงความรู้ในตัวแปรตาม y และ $(n^2 - \sum n_i^2)/2$ จะเป็นจำนวนการเปรียบ เทียบเป็นคู่ที่ไม่เท่ากันใน x แต่อาจจะเท่ากันใน y

(2)
$$d_{xy} = \frac{S}{(n^2 - \sum n_j^2)/2}$$

ในเมื่อ d_{xy} เป็นสัมประสิทธิ์ความเกี่ยวพันที่แสดงว่า จำนวนในความรู้เกี่ยวกับตัวแปร อิสระ y จะแสดงถึงความรู้เกี่ยวกับตัวแปรตาม x และ $(n^2 - \sum n_i^2)/2$ เป็นจำนวน การเปรียบเทียบเป็นคู่ที่ไม่เท่ากันใน y แต่อาจจะเท่ากันใน x

สำหรับมาตราวัดแบบสมมาตรซึ่งไม่มีการพิจารณาว่าตัวแปรไหนเป็นอิสระ และ ตัวแปรไหนไม่เป็นอิสระนั้นกำหนดไว้ดังนี้

$$d = \frac{2S}{\frac{1}{2} \left\{ \left(n - \sum n_i^2 \right) + \left(n - \sum n_j^2 \right) \right\}}$$

จากตัวอย่างของการหนึ่งานและชนชั้นทางสังคม เราได้

$$d_{yx} = \frac{56 - 156}{\left[30^{2} - (10^{2} + 10^{2} + 10^{2})\right]/2} = -100/300 = -.33$$

$$d_{xy} = \frac{56 - 156}{\left[30^{2} - (9^{2} + 11^{2} - 10^{2})\right]/2} = 100/299 = -.34$$

$$d = \frac{2(56 - 156)}{\frac{1}{2}(600 + 598)} = -200/599 = -.33$$

เมื่อไม่มีการเท่ากันทั้งใน x และ y แล้ว $\hat{\tau}$, $\hat{\tau}_b$, $\hat{\tau_c}$, G, d_{yx} และ d_{xy} จะเป็น มาตราวัดเดียวกัน แต่เมื่อมีการเท่ากันจะทำให้ส่วนของ $\hat{\tau}$ เพิ่มขึ้น ซึ่งจะปรับปรุง $\hat{\tau}$ ก้วยมาตราวัดแบบสมมาตร τ_b , τ_c , และ G กับมาตราวัดไม่สมมาตร d_{yx} และ d_{xy}

เนื่องจาก 🕝 และ 🕝 มีการเท่ากันเข้าไปเกี่ยวข้อง จึงทำให้ทั้งสองมาทราวัด มีค่าน้อยกว่า G เพราะมาทราวัด G ไม่มีการปรับปรุงกรณีเท่ากัน

ในค้านการนำไปใช้นั้น \hat{r}_b จะเหมาะสมกับมาคราจัตุรัส (จำนวนแถวนอนเท่า กับจำนวนแถวทั้งหรือ r=c) ส่วน \hat{r}_c จะใช้กับมาคราสีเหลี่ยมผืนผ้า ($r\neq c$)

10.2.5 สหสัมพันธ์บางส่วน (Partial Correlations) สหสัมพันธ์บางส่วนเป็นมาตราวัด ขนาดหรือดีกรีของความเกี่ยวพันระหว่างสองตัวแปร x และ y, โดยที่ความเกี่ยวพันที่ตัว แปร x และ y มีต่อตัวแปรที่สาม, Z, ได้ถูกขจัดออกไปแล้ว นั้นคือสัมประสิทธิ์สหสัมพันธ์ ระหว่าง x และ y อาจจะเนื่องมาจาก Z มีความสัมพันธ์กับทั้ง x และ y ดังนั้นความ สัมพันธ์กั้งเดิมระหว่าง x และ y จะต้องขจัดหรือจะต้องหำให้ลดลง เมื่อควบคุมตัวแปรที่ สาม เช่นให้ความสัมพันธ์กั้งเดิมระหว่างอายุ (x) และจำนวนลูกกวาดที่บริโภคต่อเตือน (y) แต่ทั้ง x และ y นี้เกี่ยวข้องกับน้ำหนักของหน่วยทดลอง (ผู้ถูกสอบถาม) ซึ่งจะให้เป็น Z

สหสัมพันธ์บางส่วนระหว่าง x และ y เมื่อควบกุม Z ซึ่งให้เป็น $r_{yx,Z}$ นั้นได้จาก สหสัมพันธ์ระหว่างความคลาดเคลื่อน $y=\hat{y}$ กับ $x=\hat{x}$ เมื่อใช้ตัวแปรที่สาม Z ทำนายทั้ง y และ x ดังนั้นสัมประสิทธิ์ลหลัมพันธ์แบบเพียร์สันระหว่างความคลาดเคลื่อนทั้งสองก็คือ

$$\mathbf{r}_{yx} = \frac{1}{2} \left((Y-\hat{Y}) (X-\hat{X}) \right) / \frac{\Sigma (Y-Y)^2 (\Sigma (X-X)^2)}{2}$$

ในเมื่อ $\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}_{yz} \mathbf{Z}, \ \hat{\mathbf{X}} = \mathbf{a} + \mathbf{b}_{xz} \ (\mathbf{Z}), \$ และค่าเฉลี่ยของ $(\mathbf{Y} - \hat{\mathbf{Y}})$ กับค่า เฉลี่ยของ $(\mathbf{X} - \hat{\mathbf{X}})$ ท่างก็เท่ากับ \mathbf{O}

สูตรทั่วไปของ ryx,z ข้างบนนี้จะอยู่ในรูป

$$r_{yn} = (r_{yn} - r_{yZ}r_{xZ}) / (1-r_{yZ}) (1-r_{xZ})$$

สำหรับสหสัมพันธ์บางส่วนที่จะกล่าวค่อไปนี้เป็นสหสัมพันธ์บางส่วนแบบไร้พารามิเคอร์ โดย ที่สหสัมพันธ์บางส่วนของเพียร์สันเป็นแบบพารามิเคอร์

(1) สหลัมพันธ์บางส่วนของสเบียร์แมน (Spearman Partial Correlation $ho_{(s)}$) ถ้าให้ X, Y, และ z เป็นทั่วแปรที่สนใจ และให้ $r_{(s)yx,z}$ แทนสหลัมพันธ์ระหว่าง อันคับที่ของ Y และ X ซึ่งเป็นอิสระกับผลกระทบของอันคับในตัวแปร Z แล้ว $Z_{(s)yx,z}$ จะ กำหนคไว้คังนี้

$$r_{(s)yx_*Z} = (r_{(s)+(r_{(s)YZ})}(r_{(s)XZ}))/\sqrt{(1-r_{(s)YZ})(1-r_{(s)XZ})}$$

เมื่อ r_{(s)yx.z} นี้ยกกำลังสอง หรือ r²_{(s)yx.z} จะหมายถึงสักส่วนของความผันแปรในอันคับ Y ที่เนื่องจากอันคับที่ X หลังจากที่ทั้งอันคับที่ X และอันดับที่ Y ได้รับการปรับปรุง สำหรับความพึ่งทั้งในอันคับที่ของคัวแปร Z แล้ว

ตัวอย่าง ในการศึกษาถึงความสัมพันธ์ระหว่างการบริโภคลูกกวาดต่อเดือน (Y) อายุ (X) และน้ำหนัก (Z) โดยอาศัยตัวอย่างของเด็ก 10 รายได้ข้อมูลซึ่งเป็นอันดับที่ดังนี้

R (Y)	10	9	8	7	6	5	4	. 3	2	1
R (X)	4	5	6	1	2	3	7	8	9	10
R (Z)	1	4	5	6	2	3	10	7	8	9
จากศารางเราได้ $\sum [R(Y) - R(X)]^2 = 276$ $\sum [R(Y) - R(Z)]^2 = 286$										

 $\sum \left[R(X) - R(Z)\right]^2 = 48$

ทั้งนั้น
$$r_{(s)yx} = 1 - \frac{6(276)}{10^3 - 10} = -.673$$

$$r_{(s)yz} = 1 - \frac{6(288)}{10^3 - 10} = -.745$$

$$r_{(s)xz} = 1 - \frac{6(48)}{10^3 - 10} = .709$$

$$r_{(s)yx.z} = \left\{-.673 - (.745)(.709)\right\} / \sqrt{(1 - (.745)^2)(1 - (.709)^2)}$$

$$= -.31$$

(2) สหสัมพันธ์บางส่วนแบบเคนดาลล์ (Kendall's Partial Tau, т) เกนกาลล์ได้เสนอสัมประสิทธิ์บางส่วนสำหรับมาตราวัดของเขาไว้เป็น _{Tyx.z} ซึ่งกำหนดไว้ กังนี้

$$\zeta_{yx,z} = (\zeta_{yz} - (\zeta_{yz})(\zeta_{xz}))/\sqrt{(1-\zeta_{yz}^2)(1-\zeta_{xz}^2)}$$

สมประสิทธิ์บางส่วนนี้จะใช้ ได้ก็ค่อเมื่อไม่มีการเท่ากันในอันดับที่ของ x, อันดับที่ของ y, และอันดับที่ของ z

ตัวอย่าง จาก**ท**ัวอย่างของการบริโภคลูกกวาคท่อเคือน (Y), อายุ (X) และน้ำหนัก (Z) เราหาสมประสิทธิ์บางส่วนแบบเคนคาลล์ได้ดังนี้

อย่าลืมว่า 🚓 จะใช้ได้ดีก็ต่อเมื่อข้อมูลไม่มีการเท่ากันในอันดับที่ของ X, Y และ Z

(3) สหสัมพันธ์บางส่วนแบบเควิส (Davis Partial Coefficient for Goodman and Kruskal's Gamma) เควิส (1967) ได้เสนอแกมมะบางส่วน (Partial Gamma) Gyx.z

 $G_{yx.z} = \sum G_i(f_{c_i} + f_{d_i}) / \sum (f_{c_i} + f_{d_i})$

ในเมื่อ G_i เป็นสัมประสิทธิ์แกมมะลำหรับสองตัวแปร X และ Y เมื่อกำหนดค่าที่ i ของ ตัวแปรควบคุม Z_i (i=1,2,...,k); k เป็นจำนวนประเภทหรือค่าในตัวแปรควบคุม Z_i fc_i เป็นจำนวนการเปรียบเทียบทางบวก (หรือสอกคล้องกัน) ในค่ามี i ของตัวแปรควบคุม i0; และ i1; เป็นจำนวนการเปรียบเทียบทางลบ (หรือไม่สอดคล้องกัน) ในค่าที่ i ของตัว แปรควบคุม i2

เราจะเห็นได้ว่า $G_{yx.x}$ เป็นกำเฉลี่ยแบบถ่วงน้ำหนักของสหสัมพันธ์ระหว่างคัว แปร X และ Y ในค่าค่าง ๆ ของคัวแปรควบคุมนั้นเอง โดยมีจำนวนการเปรียบเทียบ เป็นคู่ที่เกี่ยวข้องในแค่ละค่าคัวแปรควบคุมเป็นคัวถ่วงน้ำหนัก (เพราะว่า $f_c + f_d$ ในสัมประสิทธิ์แบบแกมมะนั้นเป็นจำนวนทั้งหมดของการเปรียบเทียบที่เกี่ยวข้อง)

ตัวอย่าง ในการศึกษาถึงขนชั้นทางสังคม (x), การขาดงาน (y) และเพ็ศ (z) ได้ข้อมูล มาดังนี้

ชาย (2;)

การขาคงาน (Y)		น้อย ปานกลาง มาก				น้อย ปานกลาง มาก					
	X	ท่ำ	1	1	4	6	1	1	2	4	
		กลาง	1	3	2	6	1	3	0	4	
		สูง	4	3	1	8	1	0	1	2	
		รวม	6.	7	7	20	3	4	3	10	

$$(c_1 = 1(9) + 1(3) + 1(4) + 3(1) = 19$$

$$\mathbf{fd_1} = 1(5) + 3(4) + 4(10) + 3(6) = 75$$

$$G_1 = \frac{19 - 75}{19 + 75} = -.60$$

$$\begin{aligned} \text{fc}_2 &= 1\,(4) + 1\,(1) + 1\,(1) + 3\,(1) = 9 \\ \text{fd}_2 &= 1\,(3) + 3\,(2) + 1\,(6) + 0\,(2) = 15 \end{aligned}$$

$$G_2 &= \frac{9 - 15}{9 + 15} = -.25$$

$$\text{NULL } G_{yx.z} &= \frac{-.60\,(19 + 75) + (-.25)\,(9 + 15)}{(19 + 75) + (9 + 15)} = -.53$$

การแปลความหมายของ $G_{yx,z}$ ก็จะเหมือนกับการแปลความของ G ค่าของ $G_{yx,z}$ จะชี้ว่าสัดส่วนของการเปรียบเทียบทางหนึ่ง (directional comparisons) เมื่อจำนวน หน่วยทัวอย่างที่เท่ากันในตัวแปร z นั้นถูกควบคุมในทางหนึ่ง

วิธีการหาสหสัมพันธ์บางส่วนแบบนี้ยังประยุกต์ไปใช้ได้สัมประสิทธิ์อื่น ๆ ที่อาศัย หลักของการเปรียบเทียบเป็นคู่ เช่น ค่าของ $\widehat{c_{1}}$ สำหรับค่า Z_{1} และ Z_{2} จะเป็นดังนี้

$$\hat{\zeta}_{a(z_1)} = \frac{(19-75)/(20(19)/2)}{\hat{\zeta}_{a(z_2)}} = \frac{(9-15)/(10(9)/2)}{(10(9)/2)} = -.13$$

กังนั้นสูทรสัมประสิทธิ์บางส่วนสำหรับ $\hat{\tau_a}$ จะเป็น $\tau_{a\,(yx.z)}$

$$\hat{Z}_{a(yx.z)} = (\sum Z_{a_i}(n_i)(n_i-1)/2)/\sum n_i(n_i-1)/2$$

ในเมื่อ τ_{ai} เป็นค่าของ τ_{a} ในค่าที่ i ของตัวแปรควบคุม Z, (i=1,2,...,k), k เป็น จำนวนค่าของตัวแปรควบกุม ; และ n_i เป็นจำนวนหน่วยตัวอย่างในค่าที่ i ของตัวแปรควบกุม

เพราะฉะนั้นเราจะได้
$$\hat{\tau}_{a(yx.z)}$$
 คังนี้
$$\hat{\tau}_{a(yx.z)} = \frac{(-.29)(20(19)/2) + (-.13)(10(9)/2)}{20(19)/2 + 10(9)/2}$$
$$= -.26$$

10.2.6 สัมประสิทธิ์สอกคล้องของเลนกาลล์ (Kendail's Coefficient of Concordance, W)

สมประสิทชิ์ W น้ำจะแสดงให้เห็นถึงความสัมพันธ์ระหว่างตัวแปรต่าง ๆ k ตัว (หรือการจัดอันดับ k ครั้ง) โดยการเฉลี่ยสหสัมพันธ์ระหว่างตัวแปร k ตัว ซึ่งวัดจาก ก หน่วยทดลองในเทอมของการเรียงอันดับที่