(iii) The probability of no heads (i.e. all failures) is g® =( 21—)" = é and so the

probability of at least one headis 1 — g% = 1— g%

L
64

Example 6.2: A fair die is tossed 7 times; call a toss a success if a 5 or a 6 appears. Thenn = 7, p=

1 2
P(U5,6)) = —andg=1-p= <.
(5. 6)) 3 q =3
(i) The probability that 5 or a 6 occurs exactly 3 times (i.e. k = 3) is
i T, 13,24 560
b(3;7,3) = =)= = =
( 3) (3)(3)(3) 2187
" . . o2 _ 2. 128
(i) The probability that a 5 or a 6 never occurs (i.e. all failures) is ¢7 =¢( 3—) = 5187
2059 °

hence the probability that a 5 or a 6 occurs at least onceis | — g’ = <227

If we regard n and p as constant, then the above function P(k) = b(k; n, p)is a

discrete probability distribution:

k 0 I 2 n

‘

Pk) | 4" () g™ 'p () p

It is called the binomial distribution since for k = 0, 1, 2, ..., nit corresponds to the suc-
cessive terms of the binomial expansion '

@+p)" = ¢ +g'p+ g+ ... +p°
This distribution is also called the Bernoulli distribution, and independent trials with two

outcomes are called Bernoulli trials.
Properties of this distribution follow:

Theorem 6.2:

Binomial distribution

Mean U = np
Variance ¢* = npg
Standard deviation g = Vnpg

Example 6.3: A fair die is tossed 180 times. The expected number of sixesisu = np = 180 é = 30.

L3 o

The standard deviation is ¢ = vnpg = V180- 6 g
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NORMAL DISTRIBUTION

The normali (or : Gaussian) distribution or curve is defined as follows :

1 LI
2(* uY /o

fx) =

e
avan

Where 4 and >0 are arbitrary constants. This function is certainly one of the most
important examples of a continuous probability distribution. The two diagrams below
show the changes in f as u varies and as ¢ varies. In particular, observe that these bellshaped

curves are symmetric about x = pu.

3]

-2 0 2
Normal distributions with ¢ fixed {o = 1) Normal distributions with 4 fixed (¢ =0)
Properties of the normal distribution follow :
Theorem 6.3 : . Normal distribution
Mean ]
Variance 2
Standard deviation

We denote the above normal distribution with mean x4 and variance a® by
N(u, o%)
If we make the substitution t = (x —x)/@ in the above formula for N(u, o%) we obtain the
standard normal distribution or curve

1 -2

e
v2n

o) =

which has mean u = 0 and variance 6° = 1. The graph of this distribution appears below.
We note that for — 1 <t< 1 we obtain 68.2% of the area under the curve, and for —2<t<2

we obtain 95.4% of the area under the curve.
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Normal distribution N(0, 1)

Table SNCA gives the area under the standard normal curve between t = 0 and

any positive value of t. The symmetry of the curve about t = 0 permits us to obtain the

area between any two values of ¢.

Now let X be a continuous random variable with a normal distribution; we frequently

say that X is normally distributed. We compute the probability that X lies between « and b,

denoted by P(a<X<b), as follows.

a’" = (a-u)o and b’

respectively Then

P(agxXgb) = P(a’<X*<b')

= (b-u)o

First we change @ and b into standard units

area under the standard normal curve between a’ and b’

Here X* is the standardized random variable corresponding to X, and hence X™* has the

standard normal distribution N(O, 1).

NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION.

CENTRAL LIMIT THEOREM

The binomial distribution P(k) = b(k; n, p) is closely approximated by the normal

distribution providing n is large and neither p nor g is close to zero.

This property is

indicated in the following diagram where we have chosen the binomial distribution corresponding

1
ton=8andp=q = 7.

2 _
¥
k 0 1 2 3 4 5 6 7 8
P(k) 1 ]| 8 . 28 56 70 56 28 8 1
( 256 256 256 256 256 256 256 256 256
1
Binomial distribution withn = 8andp = q = 5
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1 - . normal distribution
2 X
28 / . \/\/ binomial distribution
40 | :
256 -
N .
20 / A \

LA

T T =T 0 ? T T T
o 1 2 3 4 3 6 7 ]

Comparison of the binomial and normal distributions

The above property of the normal distribution is generalized in the Central Limit

Theorem which follows. The proof of this theorem lies beyond the scope of this text.

Central Limit Theorem 6.4: Let X, Xz, ... be a sequence of independent random variables

with the same distribution with mean ¢ and variance a’.

Xi+Xz+ ... +Xn—nu
Vneo

Let Za =

Then for any interval {a<x<b] ,
lim Pla<Z.<b) = Pago<h)

n—oo

where ¢ is the standard normal distribution.

Recall that we called S,= (X, + X,+ ... + Xu)/n the sample mean of the random
variables Xi, ..., X,. Thus Z, in the above theorem is the standardized sample mean.
Roughly speaking, the central limit theorem says that in any sequence of repeated trials
the standardized sample mean approaches the standard normal curve as the number of

trials increase.

POISSON DISTRIBUTION

The Poisson distribution is defined as follows :
k.-4

. _ Ale B
plk;4) = 0 k = 0,1,2,...

where A >0 is some constant. This countably infinite distribution appears in many natural
phenomena, such as the number of telephone calls per minute at some switchboard, the
number of misprints per page in a large text, and the number of & particles emitted by a

radioactive substance. Diagrams of the Poisson distribution for various values of A follow.
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0.3
0.2
o.—_ 'I.; lll' ‘ll[#
0 2 4+ 8 ¢ 2 4 &6 8 ¢ 2 4 6 5 10 4 2 4 & 8 10 12 14 14
A=1 A=2 A=5 A=10
Poisson distribution for selected values of A
Properties of the Poisson distribution follow :
Theorem 6.5 : Poisson distribution
Mean u o= 4
Variance 6 = A
Standard deviation | ¢ = Vi

Although the Poisson distribution is of independent interest, it also provides us with
a close approximation of the binomial distribution for small & provided that p is small and

A = ap.
This is indicated in the following table.

k 0 1 2 3 4 5

Binomial | .366 370 | .185 | .0610 | .0149 1.0029
Poisson | .368 368 [ .184 | .0613 | .0153 {.00307

Comparison of Binomial and Poisson distributions
withn = 100, p = 1/100and A = np = 1

MULTINOMIAL DISTRIBUTION
The binomial distribution is generalized as follows. Suppose the sample space of

an experiment is partitioned into, say, s mutually exclusive events Ai, Az, ..., A, with

respective probabilities p1, p2, ..., ps. (Hence pr+p2+ ... +ps = 1.) Then :
Theorem 6.6 : In 7 repeated trials, the probability that A, occurs kj times, Az occurs ka
times, ..., and A, occurs ks times is equal to

ks

n! ki k
llpZ2 e Py

Kkt okt P

where ki+ka+ ... +ks = n.
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The above numbers form the so-called multinomial distribution since they are
precisely the terms in the expansion of (p1+p2+ ... +ps)". Observe that if s = 2 then
we obtain the binomial distribution, discussed at the beginning of the chapter.

Example6.4: A fair die is tossed 8 times. The probability of obtaining the faces 5 and 6
twice and each of the others once is

srammrrn ('@ Q@D = 5395 = 006

102 PH 415



TABLE SNCO

STANDARD NORMAL CURVE ORDINATES

This table gives values ¢(t) of the

standard normal distribution ¢ at ¢{=0 [
in steps of 0.01. ¢§t)
0
¢ 0 1 2 3 4 5 6 7 B 9

0.0 .3989 .3989 .3989 .3988 .3986 .3984 .3982 .3980 3977 3973
0.1 .3970 .3965 3961 3956 .3951 .3945 .3939 .3932 3925 .3918
0.2 L3910 .3902 .3894 .3885 3876 3867 3857 3847 3836 .3825
0.3 3814 .3802 .3790 3778 3765 3752 3739 3725 3712 3697
0.4 .3683 3668 .3653 .3637 .3621 3605 .3589 .3572 3555 35638
0.5 3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 .3372 .3352
0.6 .3332 3312 .3292 3271 .3251 .3230 3209 3187 3166 3144
0.7 .3123 .3101 .3079 .3056 .3034 .3011 .2989 .2966 .2943 .2920
0.8 2887 2874 L2850 L2827 2803 2780 2756 2732 L2709 2685
0.9 2661 .2637 2613 .2589 .2b65 .26041 2016 .24382 2468 2444
1.0 2420 .2396 2371 2347 .2323 2299 2275 2251 ..222’7 2203
1.1 2179 .2155 2121 2107 2083 2059 2036 2012 .1989 .1965
1.2 1942 .1919 .1895 1872 1849 L1826 L1804 781 1758 1736
1.3 1714 1681 .1669 1647 1626 1604 1582 1561 1539 .1518
1.4 .1287 1476 1456 1435 .1415 1394 1374 1354 1334 1315
1.5 | 1285 .12ve 1257 .1238  .1219 1200 1182 1163 .1145 1127
1.6 1109 1092 1074 1057 1040 1023 1006 0989 .0973 0957
1.7 .0940 .0925 0909 .0893 0878 .0863 0848 .0833 .0818 .0804
1.8 0790 0775 0761 L0748 0734 0721 0707 0694 0681 0669
1.9 0656 0644 0632 0620 .0608 .0596 L0584 0573 0562 0551
2.0 0540 0529 L0519 0508 L0498 .0488 0478 0468 0459 0449
21 0440 L0431 0422 0413 0404 0396 .D3B7 0379 0371 .0363
22 .0355 0347 .0339 0332 .0325 .0317 .0310 .0303 0297 0230
2.3 L0283 0277 0270 0264 0258 .0252 .0246 0241 0235 0229
2.4 .0224 .0219 0213 .0208 .0203 .0198 .0194 .0189 .0184 0180
2.5 0175 0171 0167 0163 .0158 0154 0151 0147 0143 .0139
2.6 .0136 0132 0128 .0126 0122 .0119 0116 0113 0110 0107
2.7 0104 0101 0099 .0096 .0093 .0091 .0088 0086 0084 .0081
2.8 0078 0077 0075 0073 0071 .0069 0067 0065 L0063 .0061
2.9 0060 0058 0056 .0055 .0053 0051 0050 0048 L0047 .0046-
3.0 0044 .0043 0042 0040 0039 .0038 0037 0036 0035 .0034
3.1 .0033 0032 0031 .0030 0029 .0028 0027 .0026 0025 0025
3.2 0024 0023 0022 0022 0021 L0020 .0020 .0019 0018 L0018
3.3 0017 0017 0016 .0016 0015 L0015 0014 0014 0013 0013
3.4 0612 .0012 .0012 0011 0011 L0010 0010 0010 0009 .0009
3.5 0008 L0008 .0008 06008 .0008 0007 0007 0007 0007 .0006
3.6 0006 .0006 0006 0005 0005 0005 0005 0005 0005 .0004
3.7 0004 0004 .0004 0004 0004 .0004 0003 0003 L6003 .0003
3.8 0003 0003 0003 .0003 .0003 .0002 .0002 0002 .0002: 0002
3.9 0002 .0002 0002 0002 0002 .0002 0002 ..0002 0001 .0001
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TABLE SNCA

STANDARD NORMAL CURVE AREAS

This table gives areas under the stand-
ard normal distribution ¢ between 0 and
t=0 in steps of 0.01.

t 0 1 2 3 4 5 6 7 8 9

0.0 | .0000  .0040  .0080  .0120  .0160 0199 0239 L6279 0219 .0359
01 | .0398 0438 0478 0517  .0557 0596 0636  .0675  .0714 0754
0.2 | .0793 0832 0871  .0910  .0948 0987 1026 1064 1103 .1141
0.3 | .1179 1217 1255 1293 1331 1368 1406 1443 1480 1517
0.4 | .1554 3591 1628 1664  .1900 1736 1772 1B08 1844 1879
05 | .1915  .3950  .1985  .2019  .2054 2088 2123 2157  .2180 2224
0.6 | .2258  .2291  .2324 2357  .2389 2422 2454 2486 2518 2549
07 | .2580  .2612  .2642  .2673  .2704 2734 2764 2794 2823 9852
08 | .2881 2910 2939 2967 2996 3023 3051 3078  .3106  .3133
09 | .3159 3186  .3212  .3238  .3264 3289 3315  .3340  .3365  .3380
1.0 | .3413 3438  .3461 3485 3508 3531 3554 3577 3599  .3621
1.1 | .3643  .3665  .3686  .3708  .87290 3749 3770 3790  .3810  .3830
1.2 | .3849  .3869  .3888  .3907  .3925 3944 .80962 3980  .3997 4015
1.3 | 4032  .4049 4086 4082  .4099 A115 4131 4147 4182 4177
1.4 | .4i82 4207  .4222  .4236 4251 4265 4279 4292 4306 . .4319
1.5- | .4332 4345 4357 4370  .4382 4394 4408 4418 4429 4441
1.6 | 4458 4463 4474 4484 4495 4505 4515 4525 4535 4545
1.7 | .4554 4564 4573 4582 4501 4599 4608 4616 4625  .4633
1.8 | .4641 4649 4656 4664 4671 4678 4686 4693 4699  .4706
1.9 | 4713  4T19 4726 .4732 4738 A744 4750 4756 AT61 4767
20 | 4772  4TI8 4783 4788  .4793 4798 4803 4808 4812 4817
2.1 4821 4826  .4B30 4834 4838 4842 4846 4850 4854 4857
2.2 | 4861 4864 4868 4871 AB75 4878 4881 4884 4887  .4B90
23 | 4893 4896 4898 4901  .4904 4906 4009 4911 4913 4916
24 | 4918 4920 4922 4925  .4927 4929 4931 4932 4934  .4936
2.5 | 4838 4940 4941 4943 4045 4946 4948 4949 4951 4952
2.6 | .4953 4955 4956 4957  .49590 L4960 4961 4962 4963  .4964
2.7 | 4965 4966 4967 4968 4969 4970 4971 4972 4378 4974
28 | 4974 4975 4976 4977 4977 4978 4979 4979 4980  .4981
29 | .4981 4982 4982 4983 4984 4984 4985 4985 4986  .4986
3.0 | .4987 {987 4987 4988 4988 4989 L4989 4989 4990  .4990
81 | 4990 4991 4991  .4991 4992 4992 4992 4992 4993 4993
3.2 | .4998 4993 4994 4994 4004 A994 4984 4995 4995 4995
8.3 | .4995 4995 4995 4996 4996 4996 4996 4996 4996 4997
34 | 4997 4997 4997 4997 4997 4997 4987 4997 4997 4998
8.5 | .4998 4998 4998 4998  .4998 4998 4998 4998 4998 4998
3.6 | .4998 4998 4939 4999 4999 4999 4999 4999 4999 4099
3.7 | .4999 (4999 4999 4009  .4990 4999 4889 4999 4999  .4999
38 | 4999 4999 4999 4999  _4999 4999 4999 4999 4999  .4999
39 | .5000 5000 5000 L5000 5000 5000 5000 5000 5000  .5000
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VALUES OF ¢/
A 0.0 0.1 62 03 04 |05 06 07 08 09
e™A ] 1.000 905 819 741 670 | 607 549 497 449 407
ISR 2 3 4 5 6 7 8 9 10
e”? | 368  .135 0498 .0I83 .00674 |.00248 .000912 .000335 .000123 .000045
Table 6.3 -

ERRORS OF MEASUREMENT?

A measurement whose accuracy is completely unknown has no use whatever. It is
therefore necessary to know how to estimate the reliability of experimental data and how

to convey this information to others.

1. Classification of Errors

Errors of measurement are conveniently divided into several types. Systematic
errors are the same for each observation with a given apparatus and method or are some
definite function of the value of the quantity being observed. They may be due to the fact
that the design of the apparatus was based on equations which are imperfect approximations
to the actual situation. Thus Millikan had to correct his measurements of the electronic
charge for deviations from Stokes’ law of fall as applied to his tiny oil drops.

The apparatus may contain sources of systematic error. For example, scales may be
imperfectly graduated or incorrectly aligned or positioned. The two arms of a chemical
balance may differ, introducing a fixed percentage error uniess suitable precautions are
taken. ‘

A result may involve the use of auxiliary gquantities, which, if incorrect, will
introduce error. Thus most methods of determining Planck’s constant 4 require a knowiedge
of the electronic chagre e.

The most important of these categories is probably the first, the deviation of the
real system from the laws assumed for it. An apparatus seldom measures the guantity it is
supposed to; much more ofter it measures something which is assumed to be related to the
quantily in question bv a known law. Thus most of the methods of measuring the velocity
of light in free space really measure the group velocity of light in air. There have been

controversies about the relationship between these.

Zston, ., E.B. An Datroduction to Scientific Research, 1" ed., New York, McGraw-Hill, 1952, p. 232-246.
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Personal Errors. In many types of measurement, such as reading scales and setting
cross hairs, in which personal judgment enters, different individuals will often obtain
systematically different results. One person may tend, for example, to be consistently
later than another in actuating a stop watch for a given event. These personal errors may Ee
detected by having several observers mdke the same measurement, but it is more difficul:
to decide which is nearest to the truth untess known standards are available. In the same
general category are all the extremely prevalent number prejudices which almost everyone
displays‘. These are so strong that they not only markedly influence the frequency with which
the different digits occur in the estimation of tenths of a divisicn on a scale but also may falsify
results which simply need to be read directly and copied in a notebook. Each observer
should take a long series of results obtained by himself on a slide rule, say, and examine the
distribution of estimated digits. These may be tested by the X* test (Sec. 8.10) if there is any
doubt that selective bias has been at work. .

Personal errors are most likely to creep in if the meaning of the readings can be
directly interpreted by the observer in terms of a theory in which he has an interest. Persons
of the highest probity will often unconsciously read a little high or a little low from this
cause. More flagrant cases of subconscious bias usually concern nonnumerical observations.
Eminent scientists have reported observations which a simple theory of the instruments
used showed could not have been possible.

As has been previously emphasized (Sec. 4.6), it is the duty of every scientist to
take precautions which will minimize this type of error. It is not sufficient to assert that
they occur only with other people.

Mistakes. Such errors as those of arithmetic, misplacement of a decimal point,
reversal of a sign, transposition of figures, recording of a wrong integer, the reading of a
scale backward, or the use of the wrong scale are called mistakes. They can be minimized
by obvious means. Improperly designed apparatus, with complicated types of scales, can
be the origin of so many errors of this kind as to make it important to insist on simplicity
at these points.

Assignable Causes. Every measurement is affected by a large number of variables.
The experimenter aims to control, if possible, those which have important effects, leaving
uncontrotled only the large number which individually influence the results very little.
Usually this is a very difficult task, and often there remain a small number of variables
which are not controlled and yet still have important effects. These have been called
assignable causes which if not located and either eliminated or otherwise taken into account
will interfere seriously with the accuracy and certainty of the results. For example, in
Anderson’s measurements of the velocity of light, he detected such a variation and finally
located its cause. The two beams of light impinged on a photocell from slightly different

directions so that the electrons ejected by the light took different paths and required slightly
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different times to reach the collector. Anderson was unable to overcome this cause of
variation, but his location of it led Bergstrand to a modified design which avoided this
difficulty and gave much improved values. The location of errors of this type is considered
in some detail in Secs. 9 and 10.

Random Errors. These are the variations due to the working of a number of
uncontrolled variables, each of whose effects is individually small. As their name implies,
successive observations of the same quantity should form a random sequence (see Secs. 9.9
and 10.2} if only random errors are acting. It is considered that there exists a hypothetical ‘
universe or population (Sec. 8.5), made up of the results which would be obtained if the
given observation were repeated a very large number of times, under conditions such that
assignable causes of error were excluded. Then any actual finite set of observations is
regarded a5 = random sample from this population.

In practice this hypothesis of randomness can be accepted only when no more
plausible explanation of the observed pattern of results is available. Very frequently, as
discussed in Sec. 9.9, close study shows the existence of assignable causes which can be
located and perhaps eliminated. However, when, and only when, randomness is the most
reasonable characterization of the results, it becomes possible to apply statistical analysis to
the data. These arguments lead to ways of reducing the effect of random errors and of
estimating the uncertainty which they introduce. Ordinary statistical procedures are not
applicable when the errors are not random. Modern statistical methods are based on very
different fundamental views from those in vogue even a decade or two ago, and these

affect the treatment of random errors.

2. The Normal Law of Error
It has been uvsual to assume that random errors are distributed according to the
normal law of error. Justification for this assumption will be discussed later. This law
states that the fraction dN/N of the population of observations whose values lie in the range
X 10 x+dx is given by '
d % _ :él_;(; o= —u)t20% gy (1)
Here i and o are the two population parameters which specify the distribution. The quantity
it is the mean of the entire population (not just that of the finite sample observed), and o,
called the standard deviarion of the population, is a measure of the spread of the population.

By introducing the concept of true errors, defined by

i.e., the deviations from the population mean, the distribution becomes
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Finally, if these errors are measured in units of the population standard deviation o, that is,

in terms of the variable

dN
then N

\/12-7? exp (- ;—y"") dy (4)

a form which depends on the single variable y. Figure 9.1 shows a plot of the distribution.

The meaning of this equation is that the fraction of the population with values of y between

any specified limits is given by the area under the curve between those limits.

04}
03}

02

0.1

1 2 3

v .
F16. 9.1. Graph of the normal distribution law (1,4/27) exp (— 3% as a function of
¥ o= (z — u)fa.

It is very important to maintain a clear distinction between the parameters ¢ and &,
which characterize the infinite population of possible observations, and the properties of

a particular finite sample from this population. For example, X, the sample mean, and

E (X;—i)z
s = = (5)
n—1

the sample standard deviation for n observations, should not be confused with # and o.
Greek letters are often used for population parameters to emphasize the difference.
The choice of the divisor n~1 instead of » (which is often used) in the definition of s will

be explained laler.-
Confidence Interval for u When ¢ Is Known. In many experiments, at least a rough
value is known for the population standard deviation ¢ (a measure of the “‘experimental
error’’), either by compounding estimated components of error (Sec. 9.11) or from previous

experiments. Then a measurement is made, yielding a result x. It is realized that it is highly
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unlikely that x will exactly equal u {which is unknown), but it is also unlikely that it will
differ from ¢ by many multiples of ¢. What kind of statement can be made about the value
of ¢ from this one observation x, together with three assumptions : that the measurement

was a random selection from a normal population of known a?

//
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,,'___._7,4_4_‘.___ i
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p=x-1960 p=x =R 1966
/,t —p—

Tra. 9.2. Construction of 95 per cent confidence intervals for population mean u

when standard deviation o is known. Normal population.

This is an application of the theory of confidence intervals discussed in Secs. 7.4 and
8.4. With the given o and some assumed value of 4, plot the normal curve as a function of
x. Now suppose that it is agreed to operate at a confidence level of 95 per cent. Then cut
off 2.5 per cent of the area under the curve at each tail, leaving a range of x centered about 4.
Calculation of the area shows that the range 4 — 1.966 < x < u + 1.960 will contain 95 per cent .
of the observations. Make the same calculation for each possible value of yu. Construct a
diagram with 4 as ordinate and x as abscissa (Fig. 9.2). On this, plot the lines x = u=1.960.
These enclose a (shaded) band which actually extends an infinite distance in each direction.
By the way in which this band has been constructed, it will enclose 95 per cent of all
possible observations in all possible normal populations with the given value of o, regardless
of the value of 2. Now consider the situation in which a particular value of x has been observed,
o being known, but # not known. Draw a horizontal dashed line on Fig. 9.2 at the level of
the observed value of x. It then is reasonable to assert that i lies somewhere in the range
x —1.960 to x+ 1.96¢. This is not an expression of certainty but one made at a 95 per cent
level of confidence. This means that, in the long run, if similar statements were made
about similar observations, only 5 per cent of them would be incorrect. Thart this is true
follows from the fact that the shaded region contains 95 per cent of all possible members of

the normal populations with all values of g but given . If the assertion is made that a
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particular observation must have come from the shaded area, it will be right tn the long run
95 per cent of the time.

Naturally other values of the level of confidence can be chosen, according to the
imperance of the risk of not covering the true value of x (here 5 per cent) as compared with
the gesirability of making a more definite statement regarding the value of u. Table 9. | gives
the multiples of ¢ appropriate for other levels of confidence.

TABLE 9.1 CONFIDENCE INTERVALS FOR VARIOUS LEVELS OF CONFIDENCE.
NORMAL POPULATION WITH KNOWN ¢

Confidence Level Confidence Interval
.50 x—-0.6740 < < x+0.6740
.80 x—1.2820 < u< x+ 1.282¢0
.80 X- 16450 < g < x+ 1.6450
95 x- 1.9600 < y < x4 1.9600
.99 X- 25760 < p < x + 25160
.999 x—-32910 < u < x+3.29l0

Unsymmetrical Confidence Intervals. The critical reader will ask why the particular
95 per cent area used in Fig. 9.2 was chosen. Why not, for example, exclude 5 per cent of
the samples in just one tail of the curve or divide off the xu plane in any of an infinite
number of ways which would shade a region containing 95 per cent of all possible members?
One reason for the particular choice used is that it gives the shortest range, or confidence
interval, for y, However, situations could well arise in which it would be sensible to make a
different choice. Suppose that the cost of overestimating g were four times greater than
the cost of underestimating it. Then it would be appropriate to use the unsymmetrical
confidence interval x- 2.3260 to x+ 1.751¢, which still includes 95 per cent of all the
populations but excludes 4 per cent of the tail on the low side and only 1 per cent on the
high side. This is clearly slightly longer than the symmetrical choice.

Case of Several Observations. Usualy a measurement is repeated severa times
and the mean x calculated. Under the same assumptions as before, it is easy to calculate
confidence intervals for the population mean g when what is given is the mean x for a
random sample of n from a norma population of known ¢. For 95 per cent confidence,
one obtains, as will be shown,

X 1960 _ p <i+1.96a

— 6
Vn vn ©)

The other levels of confidence can be obtained similarly by substituting the numerical
coefficients given in Table 9.1. In other words, the use of the mean of a sample of » instead
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of just one observation closes down the confidence interval by a factor vn so that, on this
basis, the mean of 100 observations should be ten times as precise as a single observation.
This principle is very important, but it has severe practical limitations, which will be discussed
later, in Sec. 9.6.

To derive Eq. (6) above, it is necessary to consider the joint distribution of n
observations. When the population is normal, the probability dP that the first observation
is in dx| at x1, the second in dx; at X2, etc., under the assumption that the separate observations
are quite independent of one another, is the product of the separate probabilities, or

-z (xi—w)’
dP = (2m "o Texp| —— 572

dx; dxz ... dxn )

By a simiple change of variables, followed by integration over all the new variables except

x and s, defined by

_ X
X = =N (8)
n
and ¢ = M 9
n—1
there is obtained
dp —_ C'e X “V'z”jd-?_(HSHWZC mn |l§‘yr2fl" ds’ (10)

C is a normalizing constant independent of x and 5. This equation shows how the sample
mean x and sample standard deviation s are distributed. It is seen that they are entirely
independent of one another, so that a given sample of # observation. may scatier ver&
widely (large s5) and yet have its mean x close to x. Furthermore, imecgration over all
values of 5 (0 1o o0) yields

1

P = Q0 (L)

3 e T gy (11)
for the distribution of the mean X alone. This shows that x is normally distributed with
standard deviation o/vn, which is the result required to give Eq. (6) for the confidence interval.

If it is certain that the data can be considered as a random sample from a normal
population of known standard deviation d, then the oniy feature of the data of any
importance is its mean x. However unrepresentative the sample standard deviation s may
be, or the order in which the values were obtained, these can only be viewed as perhaps
surprising but not as the basis for any action. '

In practice, no such certainty regarding the randomness, the normality of the
population, or the standard deviation ¢ ever exists. At most the observer may have a high
degree of confidence in the approximate conformity of his data to these conditions. This
confidence is not ironclad and might be shaken if the standard deviation of the sample were

enormously greater than o, for example. This intermediate situatjon will be rreated later,
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but first a discussion will be given of the other extreme case, the one in which no prior

knowledge whatever of ¢ is available.

Confidence Interval When o Is Unknown. In some situations no prior knowledge
of the population standard deviation is available. Under these conditions (which very
rarely occur in this extreme form) a single observation x gives essentially no information
about the population mean p at all. However, a sample of n > 1 observations does provide
information since the spread, as measured by s, is an indication of the value of o.

The joint distribution of X and s was given in Eq. (10). Transformation from

these variables to the new set

(= ®-@Vn s (12)
S 07-

followed by integration over all values of u, leads (see the Notes) to the so-called Student’s

t distribution,

tl -ns2
dP = C'(1+-—) dt 13
n—1
C' being a normalizing constant dependent on n. This function has been tabulated for
small values of n. For large values it rapidly approaches a normal distribution. This
distribution involves only the sample properties xand s and the population mean u. Since
o has been eliminated, it is possible to use the t distribution to obtain confidence intervals

of the case in which o is unknown. These are given by

=k -, k
X—— T <x+ S 14
Tt KX 9
where Xis the sample mean, s is the sample standard deviation,
T (xo—%)?|3
§ = [_-' o (15)
n-1

and k is obtained from an integration of the t distribution. Some values are given in Table
9.2

Comparison of Two Types of Intervals. It is very important that the true meaning
of these confidence intervals be thoroughly understood. To illustrate this point, an
idealized experiment was performed. Thirty-two pairs of numbers were drawn randomly
from a normal distribution with ¢ = Oand ¢ = 1. For each pair the sample mean x was
calculated and plotted as a short horizontal bar in Fig. 9.3, With the known ¢ of unity, 50
per cent confidence limits were computed, giving intervals of fixed length 0.950¢ = 0.95.
These are shown as solid vertical lines centered at the means X With the use of Eq. (14),
confidence limits were aiso calculated for the case in which the value of o is not known but
in which the sample standard deviation s must be employed. Since the value of s is subject
to rather violent fluctuations for samples of only two observations (or even for considerably

larger values of n), the lengths of these intervals vary greatly. They are shown as dashed
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Table 9.2. Coefficients k for Use in Calculating Confidence Limits with Eq. (14). Entries
Are Also Critical Values t, for Student t Distribution*
[See Eq. (4), Sec. 9.10]
Confidence level

Degrees of | No. gbser- 50 80 90 5 ay

freedom vations
1 2 1.00 3.08 6.31 12.71 63 .66
2 3 .82 1.89 242 4.30 9. 493
3 4 A7 1.64 2 35 3.18 5.84
4 5 74 1.53 2.13 2.78 4.60
5 6 .73 1.48 2.02 2.57 4.03"
6 7 7 1.44 1.94 2.45 3.71
7 8 1.42 1.90 2.37 3.50
8 9 7l 1.40 1.86 2.31 3.36
9 16 .70 1.38 1.83 2.26 3.25
10 I1 70 1.37 1.81 223 3.17
11 12 760 1.36 1.80 2.20 3.11
12 13 70 1.36 1.78 218 3.06
13 14 69 | 1.3% 1.77 2.16 3.0¢
14 5 .69 1.35 1.76 2.15 2. 98
15 16 .69 1.34 1.75 2.13 2.95
" w 67 1.28 1.65 1.96 2.58

* Abridged from Table IV of Fisher and Yates, Statistical Tables for Biologicel,
Agricultural, and Medical Research, published by Oliver & Boyd, Ltd., Edinburgh and
London, by permission of the atuthors and publishers.

vertical lines, also centered on X. It will be seen that very nearly half (16/32 and 17/32) of
each kind of confidence intervals do overlap the true population mean u = 0, The lengths
were calculated on a theory designed to make this result true in the long run. Nc.e that
the two types of intervals achieve this average result in two different ways, When o is
kniown, the interval is of fixed length but its center is subject to the inevitable sampling
fluctuations of x. When o is unknown, the length of the interval also fluctuates because
s does, but the lengths are such that on the average half of them still cover the true value,
though it is not always the'same ones which are successful. Since one method uses more
information than the other, it is to be expected that the average length of the Student-type
intervals would be longer than the other type and this is in fact the case. Therefore if o is
definitely known, it should be used and s ignored, because, on the average, more definite
staternents can be made at the same level of confidence. '
The figure also illustrates two points on which the classical treatments of the
theory of errors were often incorrect. In the first place, the usual practice was to estimate
o by the use of s and then to employ the fixed range based on this estimate of ¢. For

small samples this gives ranges which arc considerably too short on the average to cover

P 415 113



2%
i
i i
. i i
1 |' : 1
] 1 ) . [
; i Pl i i
L t I A 1 H
1 -t [ I ]
1 1 ]
J [ ! ]
] b REEE - 4
i L ¥ [ i | A
| i i 1
Il I.: :1 1:] Lt v
- ] t
BT L R i
|:::: A | o s iooa ]
(I - ton ELa i H P h P
i Ve i 7 B ! f o b i
o] r:']' T — o t i :l +-
i T ! [ | e b :
"’_L' H | o 1 (BN AT H
[, 4 [ | 1 | b h o ]
I ! i A 1 I
LR [ [ O v [ L N
¥ .. i [ T
1 Pt 1 1t il H
1 1 ! | 1 | ) |
[} IR ] ' | 1 [ (I .
1 1 ) L] (] 3 '
-1 - : 1 L i H ;
r i 1 )
! i 1
t -
X :
{
I H
LI |
H
!
-2+ :

Fra. 9.3, A set of 32 samples of two, drawn 2t randem from a normal distribution of
meun zere and ¢ = 1. Horizontal bars are means, vertical solid lines are 50 per cent
confidenee intervals calculated with known o, vertical dashed lines are 5 per cent con-
fidence intervals calenlated with the Student methed which does not use a knowledge
of 6. About half of each type overlap the true value (0). The pair of horizontal lines
are caleulated from the known g and o so as to contain half the means in the long run
{etually include 16 out of 32).

the true value the desired fraction of the time. Student’s work corrects this ervor, which
is not serious for large n, say n > 15.

The second error is one of basic viewpoint. The reader was often led to the idea
that he could use the sample s to determine limits within which half of all future means
would lie. The fluctuations of s from sample to sample, as well as those of x, make this a
very hazardous enterprise, unless n is quite large. To take an unfavorable case, suppose
such an inference had been made from the data of the first pair of Fig. 9.3. Instead of
half of the other thirty-one means lying within the dotted range calculated from this pair,
only four are included.

The corréct viewpoint, as has been stated, is that if confidence intervals are
repeatedly calculated and each time the interval is asserted to overlap y, these assertions
will be right in the long run a certain fraction of the time—the confidence level adopted—
provided the other assumptions required are satisfied. A high level of confidence goes

“with a long interval, a low level with a shorter interval.

Situation When o Is Known Roughly. In practice if usually occurs that a rough a
priori knowledge of o is available, but not an accurate value of great certainty. It is then
possible to combine the prior knowledge of o with the observed s of the sample to

114 PH 415



calculate a confidence interval which makes use of all the available information. The basis
for this calculation is Bayes’ theorem of Sec. 10.1.

This procedure is not ordinarily used. Suppose that s comes out much higher than
the sampling distribution of s, in terms of the estimated o, would make probable. [The
second factor of Eq. (10) governs this distribution.] Then it is rather likety that the
estimate of o is wrong, or that the apparatus is not in control, or that a mistake has been
made.

However, it would be reasonable to make a rough, intuitive application of Bayes’
theorem in those cases in which ¢ was only roughly known, by adopting a confidence
interval somewhere in between that based on ¢ and that based on s, according to some rule
decided upon in advance of the experiment.

Other Estimates of Precision. The confidence-interval approach is probably the
most satistactory way at present available of indicating the estimated reliability of an
average, in so far as random errors are concerned. It is often desired, however, to make
an estimate of the spread of the parent population. The best measure of this spread is ¢2,
the square of the peopulation standard deviation, and this quantity is called the population
variance.

If the only information available is that contained in a sample of n observations,

the best estimate of a? is

¢ = T (xX)? (16)
n-—1

The divisor n—1 is used in order that the estimate will come out right in the long run
when averaged over all samples of size n.  An estimate which is correct on the average in
this way is called an unbiased estimate. Omne advantage of Eq. (16) above is that it provides
an estimate of o* even when the parent population is not normal. As has been emphasized,
a small sample cannot provide a very reliable estimate of o® because of sampling fluctuations.
For normal populaticns, however, s? provides the most efficient estimate of o3, that is, the
one with the least sampling variation (in a certain sensej. Whenever it is desired to get the
most out of a sampie. s? shoald therefore be the estimate used.

A short-cut method of calcuiating s? is very useful. Let a be any constant whatever,
Then

s
|

Py l . i 2
P 3 [(x,—a)—{x—a)}

-] ”_[z(x,.—a)l—z(i—a)z(x,—a)m(i—a)*} (i7)

(n-1
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Because of the definition of X,the last two terms combine, so that

1 PR | NP
— 3 (x;—a) n—l(x a)

§? =
n—1

, 2 (18)
= L {Zx-a) —i[Z(x,’—a)]l}

Consequently, all observations x; should first be reduced in size by subtracting an
appropriately chosen constant a from each. Since variations in experimental measurements
are often only a few times the least count, the reduced values will seldom exceed a hundred
units. Their squares are then easily obtained from a small table. With this procedure, s?
is not at all formidable to calculate. Table 9.3 gives a worked-out example of the calculation
of s?, for a set of values drawn at random from a normal population with 4 = 10 and o
= 0.50.

There are other ways of estimating o (or 0%). None are as effcient as s, but some
are easier to calculate. For small samples (say n < 11) the range w is useful. This is the
difference between the greatest and least values in the sample. It becomes a less and less
efficient estimator as the sample size increases and is ordinarily not used for large samples,
except for quick estimates and checking. In order to obtain an unbiased estimate of o, it
is necessary to multiply the range by a numerical factor, given in Table 9.4. These factors
can be calculated by first obtaining a distribution function for the range and then averaging.

The range for the data in Table 9.3 is 1.56, which gives .507 as an estimate of g,
which is better than the value .511 obtained from s, but on the average s will give the more

accurate estimate.

TasLe 9.3. AN FxaMPLE oF THE CALCULATION OF THE SAMPLE VARIANCE s! BY
Suorr-cut METHOD
Observations | {Observations — 10.00) ; Syares
10.68 .68 L4621 Sz — a)t = 2.3560
9. 21 —.76 5776 (F/n)[S{x: — &)} = 0078
1042 42 1704 52 = $/2 3482
1G.80 .80 6400 —
. L2609
.83 — .17 L0289 e = 511
10.04 .04 0016 (th . = 500)
9.49 —.51 L2601 2 = 10.00 028
9.75 -.25 L0625 — o
9.79 — .21 D441 o
Cf. ¢ = 10.00
9.68 — .32 1024 Chow )
— .28 2.3560 l‘
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For small samples the mean deviation from the mean (average without regard to
sign) is less efficient than the range and certainly harder to calculate. For large samples
the mean deviation, multiplied by 1.253, gives an estimate of o which is better than that
provided by the range. However, by breaking the sample randomly into a number of
equal parts and averaging the ranges of the parts, an easier estimate of o can be made
which is practically as efficient. Other methods are also available which are suitable for

punched-card machines.

TABLE 9.4. MULTIPLIERS FOR CONVERTING RANGE w FOR A SAMPLE OF n
INTO AN UNBIASED ESTIMATE OF THE POPULATION STANDARD
DEVIATION 0. FOR NORMAL POPULATIONS ONLY

[From Q.L. Davies and E.S. Pearson, Supp!. J. Roy. Statistical Soc., 1, 76 (1934)]
n 2 3 4 5 6 7 8 3 10

Multiplier for range 0.886 .591 .486 .430 .395 .370 .351 .337 .325

Often a number of small samples are available which can be assumed to come
from normal populations of the same o but different means u. Then it is possible to
average the estimates of o provided by each sample, in crder to obtain a more reliable
estimate from the whole set of data. Thus if all measurements with a given piece of
apparatus (such as a measuring engine) are made in duplicate, the whole set of pairs
can provide a quite accurate estimate of the error o even though the estimates from the
individual pairs fluctuate widely.

The most efficient way of estimating the variance ¢® in such a case is with the
formula

1 3 -
2 §1 (xy—%) (19)

-~

in which x is the ith observation in the jth sample, X; is the mean of the jth sample, with
n; members, and N is the total number of observations. There are k éamples.

A Simple Substitute for t. The range w can be used instead of s in forming
confidence intervals when the true variance o® is unknown. This is much easier to
calculate and turns out to be very nearly as efficient, even for large samples, as the use
of t. However, all uses of the range are very susceptible to “‘wild’’ values.

For a given level of confidence, the confidence limits based on the range are given

approximately by

X—cw < u< X+ C.W (20)
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in which X is the mean of a random sample of n values from a normal distribution, w is
the difference between the greatest and least values in the sample, and ¢, is a constant
given in Table 9.5.

TALLE 9.5. VALUES OF ¢, FOR CONFIDENCE INTERVALS BASED ON RANGE
[From E. Lord, Biometrika, 34, 41 (1947)}

Confidence level 90% 95% 98 % 99%
2 3.157 6.353 - 15910 31.828
3 0.885 1.304 2.111 3.008
4 0.529 ¢.717 1.023 - 1316
5 0.388 0.507 0.685 0.843
6 0.312 0.399 0.523 0.628
7 0.263 0.333 0.429 0.507
8 0.230 0.288 0.366 (.429
9 0.205 0.255 0.322 0.374
10 0.186 0.230 0.288 0.333

3. Applicability of the Normal Law

Much controversy has raged over the general applicability of the normal law to
errors of observation, and it seems certain that there is still a good deal left to be said.
Many writers simply assume that it can always be used, others put forward theoretical
arguments in its favor, while still others have presented sets of data which either did or
did not support the law.

There can be little doubt regarding the qualitative correctness of the law for most
cases of measurement error in which the scale divisions or class intervals are sufficiently
fine. One expects and finds that the data support the idea of a continuous distribution
with a single maximum and a monotonic falling off toward zero on either side. The curve
generally appears to be approximately symmetrical, unless limited too closely on one side
by zero. In practice, actual data seldom provide very firm information about the frequency -
of large errors because their occurrence is so rare. Usually the situation is such that
extremely large errors are either impossible because of limitations in the length of scales,
etc., or are rejected by the observer as being duc to mistakes. The normal law, on the
other hand, permits errors of any magnitude, but the larger ones would occur so infrequently
that this is largely an academic question.

The theoretical argument for the normal law is based on the rapid approach to
normality which can be demonstrated mathematically to occur when the error is due to
the sum of a number of independent causes of about equal magnitude, each cause being
distributed in any arbitrary manner provided only that each possesses a finite standard

118 PH 415



deviation. Even if there are only four causes, each distributed binomially {Sec. 8.6), the
result is hard to distinguish from a grouped normal distribution. Therefore, it does appear
safe to use the normal law for observations in which is clear that four or five or more
sources of error enter with about equal weight. This is true of many measurements which
are systematically repeated several times with various interchanges and only the average
used. It is also true of many measurements which involve making several independent
adjustments for each observation, provided that these adjustments are all repeated each
time and have roughly equal importance.

The reason why this theoretical justification is not applicable to all measurements
is that there are many situations in which it is not obvious that there are a number of
independent sources of error or, if so, that they are of roughly equal importance. If
there is only one major source of error, it may be quite nonnormal. An example is the
case of linear measurement with a scale, the last decimal being estimated by eye. With
many. observers, highly nonnormai distributions will be obtained because of strong
number prejudices.

Experimental attempts to verify the normal law are not =asy because of the very
large number of observations required, which should be under comparable conditions.
In order to obtain very much information about the distribution in the tails, 500 or more
readings are needed. Few people have had the patience or time to acquire such data
under constant conditions. Furthermore, it seems rot to have been appreciated until
recently that evidence is required that the observations are frez from assignable causes,
i.e., are in statistical control (Sec. 9.9). Usually the order in which the observations were
made is not known, so that tests for randomness cannot be applied. In a few cases
where this is possible it is found that there were assignable causes, and therefore these
data provide no test of the distribution law.

In a situation where a given measurement process has been established as a routine,
so that hundreds or thousands of observations are made, it should be of value to test
for normality., It is frequently customary in such measurements to require duplicate
observations. Even though the specimens being measured differ in magnitude from one
another, the pairs can be used to test the assumption that they came from normal distributions
with the same standard deviation o but different means u. This analysis may be well
worth while financially because a sure knowledge that the normal law applies would
permit more certain inference to be drawn from the measurements. Otherwise a good
deal of information contained in the data, and acquirzsd at considerable money cost, is
being thrown away.

Further, the differences between members of such pairs (or perhaps the per cent
differences) can be tested for statistical control. Investigations of this kind can turn up

all sorts of unsuspected defects in the procedure or equipment. It is important, however,
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that two conditions be satisfied. The first is that the members of the pairs to truly
independent. They will not be if the operator can have any memory or knowledge of the
first reading when making the second. The record sheet or notebook should be provided
with a half page designed to cover the first set, and the routine should be arranged so as
to make it difficult for the operator to remember the first result. Also, if repeats are
made in case of disagreements, the original results should not be erased. A second
requirement is that the least count or smallest class interval used should be small compared

with the spread of duplicate measurements. This is discussed in Sec. 9.5.
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