บันทึกคำบรรยายสรุปวิชาฟิสิกส์อุณหภาพ (PH 314) ครั้งที่ 10

เสียงจากผู้ประกาศนำ

"การบันทีกแถบคำบรรยายสรุปกระบวนวิชาของมหาวิทยาลัย รามคำแหง มุ่งส่งงสริมการศึกษาด้วยตนเองและบริการความรู้ มายังนักศึกษาและผู้สนใจทั่วไป เพื่อให้บรรลุวัตถุประสงค์ พระราชบัญณัติจัดตั้งมหาวิทยาลัยรามคำแหง เป็นตลาดวิชา..... ผลิตโดยสำนักเทคโนโลยี่การศึกษามหาวิทยาลัยรามคำแหง ท่านผู้ฟังครับ ต่อไปนี้เป็นการบรรยายสรุปวิชาฟิสิกส์อุณหภาพ หรือ (PH 314) ครั้งที่ 10 ในหัวข้อ

1. การเปรียบเทียบการแจกแจงแบบต่าง ๆ
2. ฟังโ์ชันพาร์ทิชัน
3. การอธิบายปรากฎการณ์ที่สำคัญโดยหลักสถิติ

โดย รศ.อัจฉรา พันธุธุำไพ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยรามคำแหง

กรเปรียบบทียบการแจกเจงแบบต่าง $ๆ$

จากการบรรยายครั้งก่อนได้พิจารณาถึงฟังก์ชันการแจกแจงแบบโบส-ไอน์สไตน์ แบบเฟร์มี-ดิแรกและแบบแมกซ์เวลล์-โบลต์ซมันน์ ปรากฎว่ามีความแตกต่างกันเล็กน้อย โดย ที่ในหลักของโบส-ไอน์สไตน์และเฟร์มี-ดิแรก จะได้ว่าจำนวนอนุภาคโดยเฉลี่ยในระดับพลังงาน หนึ่งต่อจำนวนสภาวะที่เป็นไปได้ในระดับพลังงานนั้น จะเป็นส่วนกลับของพังก์ชันเอกซ์โพเนนเชียลของพลังงานที่แตกต่างกัน ระหว่างพลังงานของระดับนั้นกับศักย์ทางเคมีซี่งไม่มีหน่วย (เพราะหารด้วยค่าคงที่ของโบลต์ซมันน์กับอุณหภูมิสัมบูรณ์) และลบหรือบวกด้วย 1 หรือเขียน ได้ว่า $\overline{\mathrm{N}}_{\mathrm{i}} / \mathrm{g}_{\mathrm{i}}=\left|\exp \left(\varepsilon_{i}-\phi\right) / \mathrm{k}_{\mathrm{B}} \mathrm{T}+\mathrm{a}\right|^{-1} \quad$ โดยที่ $\mathrm{a}=-1$ สำหรับแบบโบส-ไอน์สไตน์ และ $a=+1$ สำหรับแบบเฟร์มี-ดิแรก

ส่วนพังก์ชันการแจกแจงของแบบแมกซ์เวลล์-โบลต์ซมันน์ ซึ่งหาได้ไดยวิธีการทำนอง เดียวกันจะได้ว่า $\overline{\mathrm{N}}_{\mathrm{i}} /\left(\mathrm{Ng}_{\mathrm{j}}\right)=\exp \left(\phi-\varepsilon_{\mathrm{i}}\right) / \mathrm{K}_{\mathrm{B}} \mathrm{T}$ แสดงว่าสัดส่วนของจำนวนอนุภาคโดยเฉลี่ย ในระดับพลังงานหนึ่ง เมื่อเทียบกับจำนวนอนุภาคทั้งหมดของระบบต่อจำนวนสภาวะที่เป็นไปได้ ในระดับพลังงานนั้น จะเป็นพังก์ชันเอกซ์โพเนนเชียลของพลังงานที่ต่างกัน ระหว่างศักย์ทางเคมี กับพลังงานระดับนั้นที่ไม่มีหน่วย

ขอให้นักศึกษาสังเกตรูปแบบของฟังก์ชันทั้งสามแบบ จะเห์นว่าของแมกซ์เวลล์-โบลต์ซมันน์นั้นจะเป็นจำนวนโดยเฉลี่ยต่อจำนวนทั้งหมด (N) ซึ่งต่างไปจากอีกสองแบบที่ได้มาก่อนนั้น

ในที่นี้จะเปรียบเทียบฟังก์ชันการแจกแจงแบบโบส-ไอน์สไตน์ กับแบบเฟร์มี-ดิแรกก่อน โดยจะแสดงด้วยกราฟความสัมพันธ์ ระหว่างจำนวนอนุภาคกับพลังงาน (ดังแสดงไว้ในรูปที่ 44) ซึ่งจะเห็นว่าเส้นกราฟของโบส-ไอน์สไตน์ จะมีแกนทั้งสองเป็นเส้นกำกับ แสดงว่าที่พลังงาน ต่ำและมีค่าใกล้เคียงพลังงานศักย์ทางเคมี จะมีจำนวนอนุภาคโดยเฉลี่ยต่อสภาวะมาก แต่ที่พลังงานสูง ๆ จะมีน้อย ส่วนเส้นกราฟ ของเฟร์มี-ดิแรกก็แสดงว่า ที่พลังงานสูง ๆ มีจำนวนอนุภาค โดยเฉลี่ยต่อสภาวะน้อย เช่นกัน แต่เมื่อพลังงานต่ำใกล้เคียงกับศักย์ ทางเคมีจะมีจำนวนอนุภาคโดยเฉลี่ยต่อ

รูปที่ 44 สภาวะเป็น 1 ต่อ 2 และเผื่อพลังงานยิ่งต่ำกว่าศักย์ตางเคมีมาก ๆ จะมีตรราส่วนน้เทื่อบเป็น 1 ต่อ 1 นั่นคือ ทุกสภาวะจะมีอนุภาคอยู่เุมมี่ได้ 1 ตัว ซึ่งตรงกับหลักการกีดกันของพาลีที่จกกัด อนุภาคสำหรับระบบในแบบเฟร์มี-ดิแรกว่า อนุภาคจะอยู่ในสภาวะเดียวกันเกินกว่า 1 ตัวไม่ได้

ถ้านักศึกษาจะพิจารณาในกรณีที่จำนวนอนุภาคโดยเฉลี่ย ในระดับพลังงานหนึ่ง ๆ น้อยกว่าจำนวนสภาวะที่เป็นไปได้ในระดับนั้นมาก นั่นคือ $\bar{N}_{j} \ll \mathrm{~g}_{j}$ จะได้ว่า $\overline{\mathrm{N}}_{\mathrm{j}} / \mathrm{g}_{\mathrm{j}}=$ $\exp \left(\phi-\varepsilon_{\mathrm{y}}\right) / \mathrm{K}_{\mathrm{B}} \mathrm{T}$ นักศึกษษาจะเห์นได้ว่ารูปแบบนี้คล้ายกับแบบแมกซ์เวลล์-โบลต์ซมันน์ยิ่งขึ้น แต่ยังคงต่างกันโดยที่ไม่ได้เทียบจำนวนทั้งหมด (N) ตามเดิม อย่างไรก็ตามรูปแบบนี้จะเรียก ได้ว่าเป็น ฟังก์ชันการแจกเจงตตมแผนเดิม (classical distribution function) และนับว่าเป็นรูปแบบ ที่ถูกต้องของแมกซ์เวลล์-โบลต์ซมันน์ ซึ่งเมื่อแสดงด้วยกราฟ (ในรูปที่ 44) ก็อาจกล่าวได้ว่า ที่พลังงานสูง ๆ จะมีจำนวนอนุภาคโดยเฉลี่ยต่อสภาวะน้อยมาก และเหมือนกันทั้งสามแบบ

ความแตกต่างกันในระหว่างฬังก์ชันการกระจายแบบต่าง ๆ จะเห์นว่ามีสาเหตุมาจาก การพิจารณาระบบมหภาค ซึ่งประกอบด้วยอนุภาคที่แตกต่างกัน สำหรับของเฟร์มี-ดิแรกนั้น อนุภาคจะต้องกระจายกันตามหลักการกีดกันเพาลี โดยที่หลักการนี้จะใช้กับอนุภาคที่มีสปิน เป็นจำนวนครึ่งหนึ่งของจำนวนเต็ม เช่น $\pm 1 / 2, \pm 3 / 2, \ldots$ อนุภาคเหล่านี้ได้แก่อเเล็กตรอนและ โพสิตรอน ส่วนอนุภาคที่เป็นไปตามแบบโบส-ไอน์สไตน์จะมีสปินเป็นเลขจำนวนเต็ม ได้แก่ อนุภาคโฟตอนและโฟนอน และสำหรับอนุภาคตามแบบแมกซ์เวลล์-โบลต์ชมันน์ คืออนุภาค ของก๊าซต่าง ๆ ซึ่งส่วนใหญ่จะเกาะกันเป็นโมเลกุล จึงเรียกรวมกันไปว่าก๊าซเชิงโมเลกุล (molecular gas) เช่น ไนโตรเจน ออกซิเจน และไฮโดรเจน

ในตอนต่อไปนี้จะได้น้ำฟังก์ชันการแจกแจงแบบต่าง ๆ มาใช้ในการหาค่าทางเทอร์โมไดนามิกส์ของระบบต่าง ๆ กัน ซึ่งสามารถจะพิจารณาได้ง่ายขึ้นเมื่อนำไปสัมพันธ์กับพังก์ชัน ที่สำคัญอีกฟังก์ชันหนึ่ง เรียกว่า "ฟังก์ชันพาร์ทิชัน" ที่มีประโยชน์มากและสามารถนำมาใช้ เพื่อหาค่าต่าง 9 ทางเทอร์โมไดนามิกส์ โดยที่ถ้าทราบว่าพังก์ชันนี้สัมพันธ์อย่างไรกับค่าใด, ค่าหนึ่งเช่น ความดัน ปริมาตร และพลังงานภายใน ซึ่งเป็นค่าทางเทอรโโมไดนามิกส์ที่มีอยู่ด้วยกัน ทั้งหมด 8 ค่า ดังได้บรรยายไปแล้วในตอนต้น ๆ ก็จะสามารถคำนวณหาค่านั้น ๆ ได้จากพังก์ชันนี้

ฟังก์ชันพาร์ทิชัน

ในการนำฟังก์ชันพาร์ทิชัน (partition function) ไปใช้หาค่าต่าง ๆ ทางเทอร์โมไดนามิกส์ จะใช้อักษร Z แทนพังก์ชันนี้ โดยจะกำหนจว่า $\mathrm{Z}=\Sigma \mathrm{g}_{j} \exp \left(-\varepsilon_{j} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$

เมื่อพิจารณาอยู่ในรูปของฟังก์ชันการแจกแจงแบบแมกซ์เวลล์-โบลต์ซมันน์จะเขียนได้ว่า $\overline{\mathrm{N}}_{\mathrm{j}} / \mathrm{g}_{\mathrm{g}}=(\mathrm{N} / \mathrm{Z}) \exp \left(-\varepsilon / \mathrm{K}_{\mathrm{B}} \mathrm{T}\right)$ และสามารถหาความสัมพันธ์ระหว่างพังก์ชันพาร์ทิชันกับค่า ต่าง ๆ ทางเทอร์โมไดนามิกส์ก็ได้ ดังนี้

ศักย์ทางเคมี $\quad \phi=-\mathrm{k}_{\mathrm{B}} \mathrm{T} \ln \mathrm{Z}$

PH 314 (L)

ฟังก์ชันเฮล์มโฮลท์ส, $F=-\mathrm{Nk}_{\mathrm{B}} \mathrm{T}(\ln \mathrm{Z}-\ln \mathrm{N}+1)$
เอนโทรปี, $\quad \mathrm{S}=\mathrm{Nk}_{\mathrm{B}} \mathrm{T}(\partial \ln \mathrm{Z} / \partial \mathrm{T})+\mathrm{Nk}_{\mathrm{B}}(\ln \mathrm{Z}-\ln \mathrm{N}+1)$
พลังงานภายใน, $\quad \mathrm{U}=\mathrm{Nk}_{\mathrm{B}} \mathrm{T}(\partial 1 \mathrm{n} \mathrm{Z} / \partial \mathrm{T})_{\mathrm{v}}$
ความดัน,
$\mathrm{P}=\mathrm{Nk}_{\mathrm{B}} \mathrm{T}(\partial \ln \mathrm{Z} / \partial \mathrm{V})_{\mathrm{T}}$
การนำความสัมพันธ์เหล่านี้ไปใช้หาค่าต่าง ๆ จะต้องทราบว่า. ฬังก์ชันพาร์ทิชันสำหรับ ระบบที่ต้องการหาค่านั้นคืออะไรเสียก่อน ดังเช่นการหาค่าต่าง ๆ ของก๊าซอุดมคติโดยอาศัย ฟังก์ชันพาร์ทิชันต่อไปนี้

ตัวอย่าง 10-1 การหาค่าต่าง ๆ ของก๊าซอุดมคติโดยฟังก์ชันพาร์ทิชัน
สำหรับระบบก๊าซอุดมคติที่ประกอบด้วยอนุภาคเดี่ยว (monatomic) จะได้ว่า ฟังก์ชัน พาร์ทิชัน $\mathrm{Z}=\mathrm{V}\left(2 \pi \mathrm{mk}_{\mathrm{B}} \mathrm{T} / \mathrm{h}^{2}\right)^{3 / 2}$ เมื่อแทนค่าลงในความสัมพันธ์สำหรับค่าความดัน ปรากฏว่า $P=N k_{B} T / V=n R T$ ซึ่งตรงกับกฎของก๊าซนั่นเอง และสำหรับพลังงานภายใน $U=$ $3 / 2 \mathrm{Nk}_{\mathrm{B}} \mathrm{T}=3 / 2 \mathrm{nRT}$ ซึ่งตรงกับที่ได้พิจารณาแล้วโดยทฤษฎีจลน์ของก๊าซอุดมคติ และจะ หาค่าความร้อนจำเพาะที่ปริมาตรคงที่ $c_{v}=3 / 2 R$

ตัวอย่าง $\mathbf{1 0 - 2}$ การแจกแจงของโมเลกุลตามขนาดความเร็วของก๊าซอุดมคติ
โดยอาศัยฟังก์ชันพาร์ทิชันสามารถแสดงได้ว่า อัตราเร็วของโมเลกุลก๊าซอุดมคติขึ้นอยู่ กับอุณหภูมิสัมบูรณ์ ดังนี้ สำหรับความเร็วโดยเฉลี่ยแบบต่าง ๆ (ดังแสดงไว้ในรูปที่ 45) คือ $\begin{aligned} & \mathrm{v}_{\mathrm{rms}}=\sqrt{\overline{\mathrm{v}}^{2}}=\left(1 / \mathrm{N}_{0}^{\infty} \int \mathrm{v}^{2} \mathrm{dn}_{\mathrm{v}}\right)^{1 / 2} \\ & \overline{\mathrm{v}}=\int \mathrm{vdN}_{\mathrm{v}} / \mathrm{N}=\sqrt{2} .55 \mathrm{k}_{\mathrm{B}} \mathrm{T} / \mathrm{m} \\ & \text { และ } \quad \mathrm{v}_{\mathrm{m}}=\sqrt{2 \mathrm{k}_{\mathrm{B}} \mathrm{T} / \mathrm{m}} \\ & \text { โดยที่ } \mathrm{v}_{\mathrm{m}}: \overline{\mathrm{v}}: \mathrm{v}_{\mathrm{rms}}=1: 1.128: 1.224\end{aligned}$

รูปที่ 45

ตัวอย่าง $10-3$ ความดันบรรยากาศ

โดยที่บรรยากาศประกอบด้วยอนุภาคที่จะเป็นไปตามแบบแมกซ์เวลล์-โบลต์ซมันน์ และจะ มีความดันเปลี่ยนแปลงไปตามระดับความสูงจากผิวโลก (y) ดังนี้

$$
P_{y}=P_{o} \exp \left(-m g y / k_{B} T\right)
$$

เมื่อ P_{0} คือ ความดันของบรรยากาศที่ผิวโลก
จะเห็นว่าคว่ามดันของบรรยากาศเกิดจากแรงโน้มถ่วงของโลก ซึ่งกระทำต่ออนุภาค ในบรรยากาศ (mg) และขึ้นอยู่กับระดับความสูงจากผิวโลกกับอุณหภูมิด้วย

หมายเหตุ

นอกจากนี้จะเห็นว่ายังมีความสัมพันธ์ กับอุณหภูมิด้วย ในตอนนี้จะขอให้นักศึกษา พิจารณาลักษณะการกระจายตามอัตราเร็วของ แมกซ์เวลล์-โบลต์ซมันน์ที่อุณหภูมิต่าง ๆ นอกจาก จะสัมพันธ์กับความเร็วแล้ว ในฟังก์ชันการแจกแจงชึ่งเป็นฟังก์ชันของค่าคงที่ของโบลต์ซมันน์ คูณกับอุณหภูมิสัมบูรณ์ว้วยนั้น ผลคูณนี้คือพลัง งานความร้อน จึงแสดงถึงความสัมพันธ์ของ พลังงานในรูปต่าง ๆ ที่ทำให้เกิดพลังงานของ ระบบและการแจกแจงของอนุภาคภายในระบบ

รูปที่ 46 ภายในระบบ

อนึ่ง พังก์ชันการแจกแจงของแมกซ์เวลล์-โบตต์ซมันน์ (ดังแสดงไว้ในรูปที่ 45 และ 46) จะเห็นว่ามีลักษณะคล้ายระมังเบ้ไปทางซ้าย ซึ่งอธิบายได้ว่า โดยทั่วไปจะมีอนุภาคอยู่เป็น จำนวนน้อยมากที่ความเร็วสูงและความเร็วต่ำมากๆ แต่จะมีอนุภาคอยู่มากในช่วงที่ความเร็ว ไม่สูงหรือต่ำจนเกินไป และที่อุณหภูมิต่ำจะทำให้พลังงานของระบบต่ำ ดังนั้นอนุภาคส่วนใหญ่ จะมีความเร็ว่ำไปด้วย แต่ที่อุณหภูมิสูงอนุ๊าคส่วนใหญู่จะมีความเร็วสูงนั่นคือ มีพลังงานสูงด้วย (โดยที่พื้นที่ใต้เส้นโค้งคือจำนวนอนุภาคทั้งหมดของระบบซึ่งคงที่ ดังนั้น เมื่ออนุภาคส่วนใหญ่ มีความเร็วสูงขึ้นที่อุณห่ภูมิสูงจะเห์นว่าเส้นโค้งในกราฟของรูปที่ 46 จะขยายออกไปทางขวา แต่จุดสูงสุดของเส้นโค้งจะลดลงเพื่อที่จะได้ว่าพื้นที่ใต้เส้นโค้งแต่ละเส้นเท่ากันหมด)

ต่อจากนี้จะนำหลักสถิติที่ได้พิจารณาแล้วในทางเทอร์โมไดนามิกส์ ไปอธิบายระบบที่ แตกต่างกัน

การอธิบายปรากฏการณ์ที่สำคัญโดยหลักสถิติ

ในการนำฟังก์ชันการแจกแจงทั้งสามแบบไปพิจารณาระบบที่แตกต่างกัน เช่น ระบบ อิเล็กตรอนอิสระในโลหะตัวนำ ซึ่งมีผู้ค้นพบว่าอิเล็กตรอนอิสระในโลหะทำให้โลหะเป็นตัวนำ ที่จีเพราะอิเล็กตรอนเหล่านี้สามารถพุ้งกระจายได้อย่างรวดเร็ว ถ้าหากพิจารณาว่าเป็นกลุ่ม อนุภาคเช่นเดียวกับกลุ่มอนุภาคก๊าซทั่วไป อาจจะเรียกอิเล็กตรอนอิสระในโลหะว่าก๊าซอิเล็กตรอน อยู่ในโลหะนั้น ในทำนองเดียวกันกับก๊าชที่บรรจุอยู่ภายในภาชนะ เมื่อหาค่าความร้อนจำเพาะ โดยพิจารณาว่า ก๊าซอิเล็กตรอนกีเหมือนกับก๊าซทั่วไป ปรากฏว่าค่าความร้อนจำเพาะของโลหะ ที่ประกอบด้วยโครงสร้างของโลหะภายใน และมีก๊าซอิเล็กตรอนกระจายอยู่ทั่วไปภายในโลหะ จะมีค่ามากเกินไปกว่าค่าที่วัดได้จากการทดลอง (สำหรับก๊าซอนุภาคโดยมีค่าความร้อนจำเพาะ $c_{v}=3 / 2 \mathrm{R}$ และสำหรับของแข็งทั่วไปมีค่าราว 3 R ที่อุณหภูมิห้อง) ดังนั้น จึงไม่อาจนำหลัก สถิติที่ใช้กับก๊าชทั่วไป มาใช้กับอิเล็กตรอนอิสระในโลหะได้ ส่วนอนุภาคโฟตอนซึ่งเป็นหน่วยหนึ่ง ของการแผ่สนามแม่ไฟฟ้าแม่เหล็ก อาจพิจารณาว่าเป็นกลุ่มก๊๊ซโฟตอนทำนองเดียวกับ ก๊าซทั่วไป แต่ไม่สามารถนำหลักสถิติที่ใช้กับก๊าซทั่วไปมาใช้กับก๊าซโฟตอนได้ จึงทำให้มี หลักสถิติที่ต่างกันถึงสามหลัก สำหรับระบบที่ต่างกันสามระบบนี้

สำหรับสถิติของแมกซ์เวลล์-โบลต์ซมันน์จะนำไปใช้กับระบบก๊าซทั่วไป ซึ่งเรารู้จักดี กันอยู่แล้ว ในขณะที่หลักสถิติของโบส-ไอน์สไตน์จะใช้กับอนุภาคโฟตอนและอนุภาคโฟนอน แต่หลักสถิติของเฟร์มี-ดิแรกจะใช้กับอนุภาคอิเล็กตรอนและโพสิตรอนเป็นต้น อนุภาคที่เป็นไปตาม หลักการแต่ละหลักการจึงมีชื่อเรียกโดยเฉพาะ ดังนี้ สำหรับอนุภาคที่เป็นไปตามหลักของ โบส-ไอน์สไตน์จะเรียกว่า โบชอน (bosons) และอนุภาคที่เป็นไปตามหลักของเฟร์มี-ดิแรก จะเรียกว่า เฟร์มีออน (fermions) ส่วนอนุภาคกำซทั่วไปที่ส่วนใหญู่เกาะกันเป็นโมเลกุลนั้น เรียกว่า ก๊าซเชิงโมเลกุล (molecular gas) ซึ่งเป็นไปตามหลักของแมกซ์เวลล์-โบลต์ซมันน์ ดังกล่าวแล้ว

ในตอนสุดท้ายนี้ ขอให้นักศึกษาเปรียบเทียบฟังก์ชันการแจกแจงทั้งสามแบบ และ หลักการหรือที่มาของทั้งสามหลักการนี้ว่า สิ่งที่เหมือนกันมีอย่างไรบ้าง และหากใช้หลักสถิติ หนึ่งกับระบบใด ๆ จะให้ผลถูกต้องตรงกับที่เป็นจริงหรือไม่ โดยเฉพาะการนำหลักัการทั้ง สามแบบนี้ไปศึกษาและคำนวณหาค่าต่าง ๆ ของระบบมหภาค ซึ่งประกอบด้วยอนุภาคแต่ละ ชนิดข้างต้น นักศึกษาจะอ่านรายละเอียดได้จากตำราที่จัดพิมพ์ไว้แล้วและทำโจทย์แบบฝึกหัด ที่นาสนใจ พร้อมทั้งทบทวนหลักการต่าง ๆ ตลอดจนรูปแบบของฟังก์ชันการแจกแจงแบบต่าง ๆ ทั้งหมด เชื่อว่านักศึกษาจะสามารถทำความเข้าใจกับหลักการทั้งหมด โดยเฉพาะหลักสถิติทาง เทอร์โมไดนามิกส์ได้โดยง่าย จึงขอจบการบรรยายสำหรับกระบวนวิชานี้ทั้งหมดไว้เพียงเท่านี้

แบบทดสอบความเข้าใจ

1. สมมติฐานเบื้องต้นคืออะไร
2. ความน่าจะเป็นของระบบทางเทอร์โม่ไดนามิกส์มีความหมายอย่างไร
3. หลักสถิติทางเทอร์โมไดนามิกส์เชิงสถิติมีกี่แบบและเพราะเหตุใดจึงมีหลายแบบ
4. ฟังก์ชันการแจกแจงคืออะไร
5. ฬังก์ชันการแจกแจงตามแผนเดิมคือแบบแมกซ์เวลล์ใช่หรือไม่
6. ฬังก์ชันพาร์ทิชันคืออะไรและสำคัญอย่างไร
7. การกระจายของโมเลกุลก๊าซทั่วไปขื้นกับอัตราเร็วของโมเลกุลอย่างไร
8. ระบบใดบ้างที่เป็นไปตามหลักสถิติแต่ละแบบ
9. ถ้าถือว่าอิเล็กตรอนอิสระในโลหะตัวนำเทียบได้กับก๊าซทั่วไปจะถูกต้องหรือไม่

คำตอบแบบทดสอบ 7

1. สภาวะที่เป็นไปได้ต่าง ๆ ของระบบอิสระมีความน่าจะเป็นเท่ากันทุกสภาวะ
2. จำนวนสภาวะจุลภาคที่เป็นไปได้ทั้งหมดของระบบ
3. 3 แบบสำหรับระบบที่ประกอบด้วยอนุภาคตามเกณฑ์ต่าง ๆ กัน 3 หลักเกณฑ์ คือหลัก ของโบส-ไอน์สไตน์, หลักของเฟร์มี-ดิแรก, และหลักของแมกซ์เวลล์-โบลต์ซมันน์
4. ความสัมพันธ์ระหว่างจำนวนอนุภาคกับค่าต่าง ๆ ของระบบ เช่น ฟังก์ชันการแจกแจง ตามอัตราเร็ว แสดงถึงจำนวนอนุภาคที่มีขนาดความเร็วต่าง ๆ
5. ไม่ใช่ แต่คล้ายกันมาก แต่ถือว่าฬงก์ชันการแจกแจงตามแผนเดิม คือ รูปแบบที่ถูกต้องของ แมกซ์เวลล์-โบลต์ซมันน์
6. $Z=\Sigma \mathrm{g}_{\mathrm{j}} \exp \left(-\varepsilon_{\mathrm{j}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$ ซึ่งสามารถหาความสัมพันธ์กับค่าต่าง ๆ ของระบบได้
7. ตามฟังก์ชันการแจกแจงของแมกซ์เวลล์-โบลต์ซมันน์ โมเลกุลส่วนใหญ่มีอัตราเร็วไม่สูง มากนักแต่ค่อนข้างต่ำ จึงทำให้ฬังก์ชันการแจกแจงนี้มีลักษณะคล้ายระฆังเบ้ไปทางด้าน ที่ความเร็วต่ำมากกว่า
8. ระบบอนุภาคที่เหมือนกันทุกตัวและสามารถแจกแจงไป ตามสภาวะพลังงานต่าง ๆ ได้ ไม่จำกัดทั้งจำนวนอนุภาคและสภาวะ โดยที่แต่ละสภาวะพลังงานถือว่าแตกต่างกัน จะเป็น ไปตามหลักสถิติโบส-ไอน์สไตน์ ซึ่งอนุภาคเหล่านี้มีชื่อเฉพาะเรียกว่า "โบซอน" ส่วน ระบบอนุภาคที่เหมือนกันทุกประการแต่แจกแจงไปตามสภาวะพลังงานต่าง ๆ ตามหลักการ กีดกันเพาะลีจะเป็นไปตามหลักสถิติเฟร์มี-ดิแรก โดยอนุภาคเหล่านี้มีชื่อว่า "เฟร์มิออน" แต่ระบบอนุภาคที่ไม่เหมือนกันและสามารถกระจายไปตามสภาวะพลังงานต่าง ๆ ได้ไม่จำกัด

จะเป็นไปตามหลักสถิติแมกซ์เวลล์-โบลต์ซมันน์ ซึ่งได้แก่ก๊าซทั่วไปที่เรียกรวมกันว่าก๊าซเชิง โมเลกุล
9. ไม่ถูกเพราะเมื่อหาค่าความร้อนจำเพาะของก๊าซอิเล็กตรอน เสมือนหนึ่งก๊าซอนุภาคโดด ซึ่งฟุ้งกระจายอยู่ในโครงนร้างของโลหะ เมื่อรวมกันจะได้ค่าความร้อนจำเพาะของโลหะ ตัวนำมากกว่าที่วัดได้ แต่เมื่อพิจารณาตามหลักของเฟร์มี-ดิแรก ปรากฏว่าค่าความร้อน จำเพาะของก๊าซอิเล็กตรอนน้อยมากจนไม่ทำให้ค่าความร้อนจำเพาะของโลหะตัวนำนั้น ผิดไปจากที่วัดได้จริง (ดูตำราหน้า 525 กรอบที่ $9-62$ สำหรับก๊าซอิเล็กตรอนในโลหะเงิน ที่อุณหภูมิห้อง มีค่าความร้อนจำเพาะที่ปริมาตรคงที่ $=2.25 \times 10^{-2} \mathrm{R}$ เท่านั้น ตามที่คำนวณได้ จากหลักสถิติของเฟร์มี-ดิแรก)

เสียงจากผู้ประกาศ "ที่จบลงไปนั้นคือการบรรยายสรุปวิชาฟิสิกส์อุณหภาพ หรือ PH 314 ครั้งที่ 10 โดย รศ.อัจฉรา พันธุ์อำไพ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยรามคำแหง"การบันทึกแถบคำบรรยายสรุปกระบวนวิชาของมหาวิทยาลัยรามคำแหง มุ่งส่งเสริม การศึกษาด้วยตนเองและบริการความรู้มายังนักศึกษาและผู้สนใจทั่วไป โปรดส่งคำถาม และข้อข้องใจไปยังคณะวิทยาศาสตร์ มหาวิทยาลัยรามคำแหง กรุงเทพ $10240 \ldots .$.

