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1998 Physics Olympics Problems

Problem 1. Faster than light?

In thzs problem we analyze and intérpret measurements
made in 1994 on radio wave emission from a compound
source within our galaxy,

The receiver was tuned to a broad band of radio waves
of wavelengths of severa centimeters. Figure 1 ] shows a
series of 1mages recorded at different times The contours
indicate constant radjation strength in much the same way
as altitude contours on a geographical map In the figure
the two maxima arc mterpreted as showing two objects
moving awa\ from a common center show by crosses in
the umages (The center. which 15 assumed to be fixed 1n
space. 1§ also a strong radiation emutter but mainly at other
wavelengths) The measurements conducted on the varn-
ous dates were made a the sgme tune of da
Figure 1! Radio emusston from a source in our galax.

The scde of the figure
18 grven by a line segment
showing one ac second
(as) (2s=1/3600 of a de-
gree) The distance to the
celestial body at the center
of the figure, indjcated by
crosses, is estitnated to bc
R=1235 kpcA ki]opar-
sec (kpe) equals 3 9
10" m The speed of light
isc=3.00 x 10° m/s

a) We denote the angu-
lar positions of the two
ejected tadio emtters.
relative to the common
center, by 8 |} and § ,1),
where the subscriots | and
2 refer to the left and night
hand ones, respectively,
and 1 1s the time OF obser-
viation The angular
speeds. as seen from the
Larth. are ¢, and @, . The corresponding apparent trans-
verse linear speeds of the two sources are denoted by v 7,
and v’y

Using Figure 1 1. make a graph to find the numerical
values of @, and v, in milli-arc-seconds per day (mas/d).
Also determine the numenical vatues of by v',, and v, .
(You may be puzzled by some of the results),

b) In order to resolve the puzzle ansing in part (a), con-
sider a light-source 4 moving with velocity v a an angle ¢
(0 €& £ x)lothe direction towards a distant ghserver 0
{Figure 1 2) The speed may be wnitten as v=Be¢, where ¢

1s the speed of light The distance to the source. as mea-
sured bv the observer. 15 R The angular speed of the
SOuUECE. as seen from the pbserver. 1$ , and the apparent
linear speed perpendicular to the Jine of sight 15 5

Find wand v’| in tenns of B, R and ¢.
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Figure 1.2 The obsewer is a1 O and the original position
of the light source is at 4. The velocity vector is v |

SN S

— R

¢} We assume that the two siected ehjects, deseribed 1n
the introduction and in part (a), are moving in opposite
directions with equal speeds v=fic. Then the resulis of p

wn part (b), refereing 10 the 128 hand obiect, corresnonding
to subscript 1 in part fa).

Derive formulas for [} and 41 terms of known quanti-
ties and determine therr numernical values from the data o
part {(a).

d) In the ope-bodv siuation of

art (b), find the condi-
tion for the apparent perpendinular sp g
than the speed of Light ¢.
Woite the condinon in the = 16 mmd provids an
analviic expression for the fmcting £
Draw on the gragh anzwer ok

ot the phvsically rele-

vant region of the (6 & rpiane. Show by sheding wm vhizh
part of this region the condition v > ¢ hslds
e) Still in the one-body situation of vart (hy iind «

pression for the maximum val ymay of
cnt perpendicular snesd v for

the designared fie

el v,

g gven fand
on the answ
speed mercases without b

£ The estimate for R given
verv reliable. Scientists have the ;
on a better and more durect method for determing
idea for thig goes as follows
and measure the Doppler shy
radiation from the two efected oh
the same known original wavel:
of the objects

Starung {rom the eguations for
shifl, 7 = Jo (1=P con 2101
that both objects have the s
known B = v ¢ can be expresse
as

WNae ko the

Find the numeiical value of the coefficient .

Note that this means that o
measurements will in pract:ce proy
the distance

e wovoleneth
a new estimat

)
[



Problem 2: Rolling of a hexagona prism

Consider now a long, solid, regular hexagona prism
like a common type of pencil (Figure 2 3) The mass of
the prism is M and it is uniformly distributed. The length
of each side of the cross-sectional hexagon 1s a  The mo-
ment of inertia | of the hexagonal prism about its central
axis can be written &

5 ) (2.1
=-"—Mada’
! T a

Figure 2.1: A solid prism with the cross section
of a regular hexagon.

The moment of inertia I' about an edge of the prism, can
similarly be wntten &

Y
=

(2.2) =M

a The prism 15 initiallv at rest with 1t5 axis horizontal
on an inclined plane which makes a small angle § with the
horizontal (Figure 2 2). Assume that the surfaces of the
prism are slightly concave so that the prism only touches
the plane a its edges. The effect of this concavity on the
moment o inertia can be Ignored. The prism is now dis-
placed from rest and starts an uneven rolling down the
plane. Assume that friction prevents any sliding and that
the prism does not lose contact with the plane. The angu-
lar velocity Just vefore a given edge hits the plane 1s o,
while @, 15 the angular velocity immediately after the 1m-
pact
Figure 2.2. A hexagonal prism [ying on an inclined plane.

o

R Ao SR A
110 Za Y AT ATy Y 0%

A O Gy # Q1
Frinn o
> s TRl 3!

FeATY
Fyiiaar R

Show that we may Wnite

0 = 50,

(2.3)

and write the numerical value of the the c¢oefficient ¢

b) The kinetic energy of the prism just before and after
impact is similarly K and &,

Show that we may wrte

Ki=rK 24

and write the numerica value of the coefficient r.

¢) For the next impact to occur, K, must exceed a mini-
mum value K, . which may be written in the form

Kn=0Mga  (23)

where g = 9 §] m/s? 15 the accdleration of gravity

Find the coefficient § i terms of the dope angle § and
the coefficient r

d) If the condition of part c) 15 satisfied, the kinetic en-
ergy K will approach a limiting value X, as the prism rolls
down the incline

Given that the limit exists, show that K, mayv be wiitten
(2.6)
and write the coefficient x in terms of © and r.

¢) Caleulate. to within 0.1°, the minimum slopg angle 6,
for which the uneven rolling. once started, will continue
indefinitel

K., = xMga

Problem 3: Water under an icecap

Densitv of water Py = 1000107 kelm'

Density of ice b, =0 917 10 kgim’

Specific heat of jce 6 =

, 2 LD Hke®Ci

Specific latent heet of ice L, =3410°Jikg

Density of rock & magma p.= 2.9 107 kgim’

Specific heat of rock & magma ¢, = 700 JItkg*C)

Specific latent heat of rock & magma |L, = 4 2-10°Jikg

Average outward heat flow through
the surface of the earth

Jo =006 Jim’

Melting pont of ice T,=0C

<

An 1cecap is a thick sheet of 1ce (up to a few km i”
thickness) resting on the ground below and extending hon-
zontally over tens or hundreds of km 1" this problem, we
consider the melting of 1ce and the behavior of water under
atemperate 1cecap, 1.e , and 1cecap a its melting pownt
We may assume that under such conditions the 16¢ causes
pressure variations in the same tnanner as a viscous fluid.
but deforms in a brittle fashion, principally by vertical
movement. Data for this problem 18 below.

a) Consdder a thick icecap at a location of average heat
flow ./, from the interior of the earth. Using the data from
the table, calculate the thickness d of the ice laver melted
every vear

by Consider now the yipper surface of @ ice cap. The

PH 111



ground below the ice cap has a dope angle @. The upper
surface of the cap dopes by & angle B as shown in Figure
3.1. The vertical thickness of the ice at x=() is h, Hence
the lower and upper surfaces of the ice cap cal be de-
scribed by the equations

»=xna,y, = hy+tan P (3.1)
Derive & expresson for the pressure p at the bottom of
the icecap as a function of the horizontal coordinate x

Figure 3.1: Cross section of an ice cap with a plane sur-
face resting on an inclined plane ground. S: surface,G:
ground, I: ice cap. :

¥
A .

=10

In order that the water layer between the Icecap and the
ground remains static. show that a and § must satisfy &
equation of the form

tanf=stana
and caculate §,

The line y, = 0 §x in Figure 3 2 shows the surface of the
earth below &' ice cap. The vertical thickness /r,at x = 0
15 2 km. Assume that water at the botiom 15 1N equilib-
rium. Draw the line v, and add a line . showing the upper
surface of the ce Indicate on the figure which line 15
which.

Figure 3.2 Cross section of a temperate ice cap resting on
an inclined ground with waer gt the bottom 1 equilib-
rium. G: ground, |: 1ce cap.

4

(3.2)

=08

¢) Within a large ice sheet on horizontal ground and
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originally of constant thickness

{) = 2.0 km, a conical body of water of height H = 10 km
and radius ¥ = 1.0 km 1s formed rather suddenly by melt-
ing of the 10e {Figure 3.3). We assume that the remaining
Ic€ adapts to this by vertical motion only. Show analyti-
cally and pictorially on a graph, the shape of the surface of
the icecap afler the water cone has formed and hydrostatic
equilibrium has been reached.

d) 1" its annual expedition, a group of scientists explores a
temperate ice cap 1in Antarctica The grej is normally a
wide plateau, but this iume they find a deep crater-like
depressiun formed like a top-down cone with a depth j of
100 m and aradius r of 300 “1 (Figure 3.4) The thickness
of the ice in the area 15 2000 m

Figure 33: A vertical section through the mrd-plane of a
waler cone fnside an ice cap.

S smface, #': wafer, G: ground. I: jpe cap.

B
w
L
©
i

Figure 3.4 4 vertical and central cross section of a coni-
cal depression in a temperate ice cap. S: surface,

G. ground, I' ice cap, M: magma and water intrusion for
the student to draw.

After a discus-
sion, the scien-
tists conclude that
most probably
there was a minor
volcanic eruption
below the icecap.
A small amount

of magma (molten
rock) intruded at

the bottom of the
1cecap, sohdafied
and cooled, melt-
2=0 Ing a certain vol-
ume of ice The scientists trv as follows to estimate the
volume of the intrusion and get an idea of what became of
the melt water
Assume that the 1ce only moved vertically Also assume
that the magna was compluely molten and a 1200°C at
the stat For simplicity, assume further that the intrusion
had the form of a cone with a circular base vertically be-
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low the conical depression in the surface. The time for the
rising of the magma was short relative to the ume for the
exchange of heat in the process. The heat flow is assumed
to have been prunarily vertical such that the volume
melied Irons the ice at any time is bounded by 2 conical
surfuce centered above the center of the magma intrusion.

{nven these assumptions the melting of the jce takes
wace m two steps. At {irst the water is not in pressuie.
sqeilibrium at the surface of the magma and hence flows
away. The water flowing away can be assurned to have a
temperatwre of 0°C. Subsequently, hydrostatic equilibrium
15 1eachied and the waler accumulates above the intrusion
instead of flowing away.

When thermal equibibrium has been reached. vou ae
asted 1 determine the following quantities

i The height # of the rop “I the water ¢one formed on-
&: the 1ce cap, relative to the orgnal bottom of the 1ce
cap

2 The heignt h, of the mitrusion, 1ts volume ¥, and its
INass my

3 The total mass my, “t the waier produced and the
mass m i water that flows away

Plot o @ graph the shapes of the rock mtrusion and of
the body of water remamung Use the coordinate system
suggested 1n Figure 3.4.
Experimental Problem

Equipment Provided

A Platforin with six banana jacks

B Pickup coil embedded into the platform

C Ferrite U-core with two cojls marked "A" and "B"

1 Ferrite U-core without coils

E Alumumum foils of thicknesses: 23 pm, 30 pm and
100 um

F Funcuton generator with output leads

G Two mullirneters

H Six leads with banana plugs

1 Two rubber bands and two small pieces of grease proef
paper

Multimeters

The multimeters are two-terminal devices that in this
experiment are used for measuring AC voltages, AC cur-
rents, frequency and resistance. In all cases one of the
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terminals is the one marked COM. For the voltage, fre-
quency and resistance measurements the other termina is
the red one maked V- R For current measurements the
other terminal is the yellow one marked mA. With the
central dial you select the meter function (V- for AC volt-
age, A- for AC curent, Hz for frequency and €2 for resis-
tance) and the measurement range. For the AC modes the
measyrement uncertamnty is £ (4% of reading + 10 units of
the last digit).

Function  generator

To tum on the generator you press 111 the red button
marked PWR Select the 10 kHz range by pressing the
button marked 10k, and select the sine waveform bv press-
Ing the second button from the right marked with a wave
svinbol No other bufions should be selected You can
safely tum the amplitude knob fully clockwise The fre-
quency 15 sdlected with the large dial on the left. The dial
reading multiplied by the range selection gives the output
frequency. The frequency can be verified a any time with
one of the multimeters. Use the output marked MAIN,
which has 30 € internal resistance

Ferrite cores

Handle the ferrite cores gently, they are brittle! Ferrite
18 3 ceramuc magnetc material. with low clectrical conduc-
tivity  Eddy current losses 1 the cores are therefore low

Banana jacks

To-connect 4 coil lead to a banana jack, vou loosen the
colored plastic nut. place the tinned end between the metel
nut and plastic nut. and tighten it again
Part 1: Magnetic Shcilding with Eddy Currents

Figure 1. Experimental arrangement for partl

Tone-dependent
magnetc fieds induce
eddv currents 1n con-
ductors. The edds
currents 1n furn pro-
duce a counteracting
magnetic fidd [n red
conductors, this field
will not completely
counteract the applied
field inside the mate-
na To describe the
shielding effect of alu-
minium foils e will apply the following model

B = Bye™ (1)

where B is the magnetic field benesth the fols, B, 15 the
magnetic field a the same pownt m the absence of foils, a
an attenuation constant, and ¢ the foil thickness

Experiment

Put the femte core with the coils, with legs down. on
the rgised block such that coil A s directly above the
pickup coil embedded 1 the platform, as shown m Fig 1
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Secure the core on the block by stretching the rubber
bands over the core and under the block recess. The un-
certainty in the thickness of the foils can be neglected. as
can the egror in the frequency when measured by the mul-
timeter.

1. Connect the leads for coils A and B to the jacks.
Measure the resistance of al three cods to make sure you
have good connections. You should expect values of less
than 10 Q.

2 Collect data to validate the model above and evaluate

the attenuation constant a for the aluminum foils (25 -
175 pm), for frequencies in the range of 6 - 18 kHz. Place
the foils inside the square. above the pickup cail, and ap-
ply a sinusoidal voltage to coil A.

3. Plot a versus frequency.

Part 11: Magnetic Flux Linkage

The response of two coils on a closed ferrite core to @
external dternating voltage (V,) from a sinusoidal sgnal
generator is studied. With the equipment provided, we
may assume that saturation effects can be ignored. and the
permeabilits p Of the material 15 constant.

Theory

I" the following basic theoretical discussion, and in the
treatment of the data. it is assumed that the ohmic resis-
tance in the two coils and al hysteresis effects in the core
have insignificant influence on the measured currents and
voltages. Because of these simphifications m the treatment
below, some deviations will occur between measured and
cdculated vaues

Single cail

Let us first look at a core with a single coil, carrying a
current 1. The magnetic flux <&, that the current creates in
the ferrite core inside the cail; is proportional to the cur-
rent I and to the “umber of turns ¥ The flux depends
furthermore on a geometrical factor g, which 15 determined
by the size and shape of the core, and the magnetic perme-
ability | =p, W, which describes the magnetic properties of
the core material, The relative permeability is denoted p,
and p, is the permeability of Gee space.

The magnetic flux @ ts thus given by

D= pgNl = cNI 2)
where ¢ = pg. The induced voltage 15 give" by Faraday's
law of induction,
() = -N dd(rn) - o . dl(r) (3)
dt dt

The conventional way t0 describe the relationship be-
tween current and voltage for a coil 1s through the self-
inductance of the coil L, defined by,

O]
e(1) L I

A sinusoidal signal generator connected to the coil will
drive a current through 1t given by

4)
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I(t) = ], sin ot )
where @ is the angular frequency and Ty is the amplitude of
the current. As follows from equation (3), this alternating
current will induce a voltage across the coil give" by
EM) = wcN I, Ms of (®)
The current will be such that the induced voltage is equal
to the signal generator voltage ¥, There is 4 90" phase
difference between the current and the voltage. If we only

look a the amplitudes €, and I, of the aternating voltage

and current, alowing for this phase difference, we have
£ = weN' I8 7

From now on we drop the subscript 0.

Two coils

Let us now assume that we have two coils on one core
(see Figure 2). Ferrite cores can be used to link magnetic
flux between coails. 1" an idedl core the flux will be the
same for al cross sections of the core. Due to flux leakage
1 red cores, a second coil on the core will in general ex-
perience a reduced flux compared to the flux-generating
coil. The flux ¢, in the secondary coil B 15 therefore re-
lated to the flus &, in the primary cod A through

@, = kb, @®)
Similarly a flux component ¢, created by a current in coil
B will create aflus @, = k&, in cod A The factor &,
which is called the coupling factor, has a value less than
one

The ferrite core under study has two coils A and B 1n a
transformer  arrangement. Let us assume that coil A 1s the
prumary coil (connected to the signal generator). If no cur-
rent flows in cotl B (J5=0), the induced voltage €, due to
, 18 equal and opposite to the generator voltage v, The
flux created by 7, inside the secondary coil is determmed
by equation (8) and the induced voltage in coil B is

Ey = 0keN Npl, )

Figure 2 Atransformer with @ closed magnetic cirenit.

If acurrent I, flows 1n coil B, it
will induce a voltage in coil A which

4 p is described by a similar expression.
—r The total voltage across the coil A
-

will then be given by

V= Ex= N J,— 0keN,Ngly .

(10)

The current in the secondary coil
thus induces @' opposing voltage in the primary coil, lead-
ing toanincreasein /,. A similar equation can be wntten
for g5. As can be verified by measurements, k 1s indepen-
dent of which coil is taken as the primary coil.

Experiment

Place the two U-cores together as shown n Figure 2,
and fasten them with the rubber bands. Set the function
generator to produce a 10 kHz sine wave. Remember to
set the multimeters to the most sensitive range suitable for
each  measurement. The number of turns of the two coils,
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A and B, are: N, = 150 turns and Ny = 100 turns ( § turn
on each cail).
1. Show that the dgebraic expressons for the sdif-
inductances L,, and L, are,
L= g0l )when], =0
Ly = ggf(wl) whenl, =0

and that expressons for the coupling factor k are,
k= (NB[B)/(NAIA)

when €, =0

Draw circuit diagrams showing how these quantities arc
determined. Calculate the numerical vaues of Ly, Ly & &

2. When the secondary cotl is short-circuited, the cur-
rent Z, in the primary coil will increase  Use the equétions
above to derive an expresson giving 7, explicitly in terms
of the primary voltage, the sdlf-inductance of the primary
coil, and the coupling constant Measure J;.

3. Cails A and B can be connected in seriesin two dif-
ferent ways such that the two flux contributions are either
added to or subtracted from each other

3.1. Find the sdlf nductance of the serially connected
coils, L,,, from meesured quantities in the case where the
flux contributions produced b the current | 1 the two
coils add to (strengthen) each other.

3.2. Mesaure the voltages ¥, and 1, when the flux
contributions of the two coils oppose each other. Find
their values and the ratio of the voltages, Derive an ex-
pression for the ratio of the voltages across the two coils

4. Use the results obtained to verifv that the sdf induc-
tance of acail is proportiond to the square of the number
of nts windings.

Fig 3. The ferrite COI€S with the two S0aCErS iy place.

5. verify that 1t was justified to neglect the resistance
of the prime caoil and ante vour
aguments as mathematica ex-
9 g—f__ pressions.

r 6 Thin preces of paper in-
serted between the rwo hdf cores
(as shown 1n Figure 3) reduce the
coll inductances dragticdly. Use
this reduction to determine the
relaive permeability m, of the
ferrite materid, given Ampere' slaw and continuity of the
magnetic fidld B across the ferrite . paper interface. As
sume m =m, =4p’ 107 Ns'/C* for the preces of paper and
a paper thickness of 43 mm The geometrical factor can be
determined from Ampere's law

1
ﬁ*’* Bdl =1, an
Mo

where/,, is the tota current flowing through a surface
bounded by the integration path. Write the agebraic ex-
pression for m, in field 6.a on the answer sheet and the
numerical vaue.
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