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Problem 1: Faster than light?

The recava  was tuned to a broad band of radio waves
of \\avelenpths  of several cammeters.  Figure I I shows a
senss  of unaees  recorded at &t&rent  trnes The contours
mdrcate  constant radlarmn  strength in much the !same  na)
as altitude contours on a peo~aphical  map In the ti~re
the nw mama  are mtcrpreted  as showing hv” oblects
monn~  ana! from a c~mmcm center show b! crosses  m
the una:rs iThe  center.  \<hxh  1s  assumed to be fixed x,
space. is  also a strong radmuon  enutter  but mainI> at oU,e.r
ua~&n@hs  / The measurements conducted on !he van-
ous dates i\ere  made at the saine  tune of da\
hpre 1 1 Rod10  PmlSZlon  from 0  s*urce  m our  po/*n,

Tlle  scale of th,  ti&re
1s  g,ven by a lme segment
showmg  one arc vxond
(as) (as=113600  of a de-
gnse) -L-lx  diitance  to the
celestial  hod>  at lhe center
of the figure.  mdlwted  b!
crosses, is estunated  to bc
R = 12 5 kpc. A kilopar-
set (kpc)  equals 3 09x
10’Pm  The speed  of 11@lt
lsc=300~108m/s

a) We denote ths  anfu-
lu  pasmons  of the two
elected  ra&”  ellutters.
relative to the common
center, by 8 ,(I) and 0 ?n).
where  the subswxs  I and
2 refer to the Ml  zmd  n&t
hand ones, respcc:wcl\,
and f 1s the ilme of ohser-
\nt,on  The angular
speeds. as seen from the

by In  order to resolw  the puzzle  ansmg  m part (,‘),  con-
sldcr a Iqht-source.4  movmg wth  velocity Y at an angle 6
(0 5 6 s K!  to  the ducctmn  towards a &slant  obscrvei  0
(F~gurc I 2) lhe  speed mai’  be w&en  as v=(jc,  where  c
IS the speed of hght The distance to the source. as mea-
sured bv the observer. 1s  K The an@x  speed of the
souicc.  as seen from the obrerver.  IS co, and the apparent
1mea.r  speed papendudar  to the line of s@t IS i.‘
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Problem 2: Rolling of a hexagonal prism
Consider now a long, sohd,  regular hexagonal prism

like a common  type of penal (Flgue  2 3) The mass of
the prism is M and it is uniformly distributed.  The length
of each side  of the cross-sectional  hexagon 1s  (I The mo-
ment of inertia  I of the hexagonal prism  about its central
axts  can  be witten as

lhe  moment of mertla  I’ Jbuut  an sdps of the prism,  can
slmllarly  be wIltten  as

a) lhe  prism IS “utxillv  at rest wth Its  aus horizontal
on an mclmed  plane which  maker  a small angle t3 wrh the
horizontal (Figure 2 2). Assume that the surfaces of the
prism  are slightly concave so that the prism  only touches
the plane at its edges. The effect of tlus conwvlty  on the
moment  of inertra  can be Ignored. The prism is now dis-
placed from rest and starts an une~e”  rollmg doun  the
plane. Assume that friction  prevents “ y  shdmg  and iha;
the prism does not lose contact wth the plane. The angu-
la  veloaty  Just before a @"en  edge htS  the pkI”e  IS 0,
while  q 1s  the angular velocity  munediately  after the em-
pact
Figure 2.2. A heragonolpnsm  lyrng  on an rnchnedplane.

Show that we mw  write

and write  the numerical value of the the cwff~clent  s
b) The kinetic energy of the prism just before and after

impact is sunilarly  &and  K,
Show that we may wte

Kf = rK, (2 3)
and w&e  the numerical value of the coeficlent  r.

c) For the next impact to occur, El,  must exceed a mm-
mum value KLrmn which  may be wntte”  in the form

KL_n  = &L/go (2 5)
where g = 9 81 m/s*  IS the acceleration of gravit)

Find the coeficlent  6 III  terms  of the slope angle 0 and
the coeRicle”t  i-

d) If the condition of part c) 1s  satisfied,  the kmetlc  cn-
erg)  C  41  approach a Imutmg  value K,, as the prism 1011s
do\\n  the mclme

Problem 3: Water under an icecap

Densty  ofunter p, = i 000 io’kfl

Denslty  of ice p, = 0 917 lO’L,q/“”

Spccilic  heat  ofm c, =  2  I.lO’Jlik~Y;

Sprafic latent heat of ,ce L, = 3 4-IO’Jlkg
-

Densq  of rock & mapma p,  = 2.9 lo’kg/“l’

Spsc~tic heat  ofrock &  mapla cc = 700 JlikfC)

Speufic  latent heat of rock & mafma L, = 4 2- I0’Jik.q

Average ouhvard  heat flow through J,  = 0 06 i&t
the surface of the earth

Meltmg  pant of ice To  = 0°C

An icecap  is a thick  sheet of ,ce (up to a few km i”
tkuckness)  restmg  on the qound  helou  and wiending  hon-
zontally  over tens or hundreds of km I” dus  problem, \\e
consider the meltmg  of ice and the behavior  of water under
a temperate xecap,  1.e  , and xecap  at Its meltmg  pomt
We may assume that under such condltlons  the ,ce causes
pressure variations i” the same m.xmer  as a ~xous  flud.
but deforms  in a brittle fashion, principally  by vertical
movement. Data for tius  problem 1s  below.

a) Consider a thick icecap at a loatlon  of average heat
flow Jo  from the mterior  of the earth. usmg  the data horn
the table, calculate the tickness  d of the ice layer  melted
every  year

b) Conslder  now the ppper  surface of a” ice cap. I%e
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ground below the ice cap has a slope angle u. The upper
surface of the cap slopes by a” angle p as shown in Figure
3.1. The vertical thickness of the ice at x=0 is h,. Hence
the lower and upper surfaces of the ice cap ca”  be de-
scribed  by the equations

y,=xtana,y,=h,+ta”p (3.1)
Derive a” expression for the pressure p at the bottom of
the icecap as a function of the horizontal  coordinate x

In order that the water layer between the ,cecnp  and the
gound  remains static.  show that a and p must satisfy  a”
equation  of the form

h”p=StanCZ (3.2)
and calculate s.

The hey,  = 0 & in Figure 3 2 shows the surl‘ace of the
earth  below a” ice cap. The verwal tiuckness  &at x = 0
1s  2 km. Assume that water at the bonom  1s  m equlib-
Tim.  Draw  the line-v, and add a Imev2 showng  the upper
surfxe  of the ,ce Indute  on the figure  uhxh  lme 1s
Much.
Figure  3.2: Cross section o/n  tmpera,e  rce cap restrng on
w  inclinedground  wrth  waler  at the bottom in equihb-
n’um. G: ground, I: rce cap.

4

c) Within  a large ice sheet on horizontal  ground and

onginally  of consrant  thickness
D = 2.0 km, a conxai  body of water of he@ N = 1 0 kn,
and radus  r = 1 .O km 1s formed  rather suddenly by melt-
mg of the xe  (Flgue  3.3). We assume that the remammg
ICZ adapts to 011s  by vertr,al  motion only. Show analpi-
tally  and pictorially  on a graph,  the shape of the surface of
the icecap after the water cone has fomxd  and hydrostatic
equlibrium  has been reached.
d) I” its annual exped~tmn, a group  of scientists explores a
temperate ice cap in Antarctica The area  is normally a
Gde plateau, but thx  lime  they find a deep crater-hke
depressiun  formed  hke  a topdoun  cone  u?th  a depth h of
100 1” and a radius r of 500 “ I (Figure  3.4) The thickness
of the ice m the area 1s  2000 m
Figure  3.3: A verncal  xenon  through the mrd-plane of a
wazer cone  rnsrde an rce cap.
S: suface, W:  wafer, G: ground. I: ,ce cap.

rock) intruded at
the bottom of the
mcap. sohdlfied
and cooled, melt-

==o Ing a ce!rtaLn  vol-
ume of ice The scientists  trv as follows to estlfnate  the
volume of the intrusion  and get a” Idea of what beca”x  of.
the melt water

Assume that the ice only moved vertically Also assume
that the magna was completely  molten and at 1200°C at
the start For stmphctty,  assume flier that  the intrusion
had the form of a cone wth  a circular  base vertically  be-
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When rhemlai  equliibriun  has been reacbrd.  you are
asked  10  detnlnme  the following quantities

i -I he be@*  H oi the rop “I the water c”ne  formed on-
&: kc ICC  up, rela:rc  to the ongmal  bolturn oi’thr  xe
cap

2 .The  be@ h, oftbe mtrwon,  iis volume V,  and ,ts
I”i!bb  “:>

? -5 loml  mass nziM  “t  the wa,e,  produced and the
ni:,,s TN  “i  waler  tha1  flows il\va\

I’lot  I,,,  a graph  the shnpcs  ofthe loci; L”truS*On  and of
the bud>  of ~dier  remaumig Use the coordmote  system
suggested I” Ftgue  3.4.
Experimental  Problerr.

Equipmen‘  Provrded

terminals is the one marked COM. For the voltage, tie-
quency  and resistance measurements the other terminal is
the red one marked V-R. For current  measurements  the
other terminal is the yellow one marked mA. With the
central dial you select the meter function (V- for AC volt-
age, A- for AC cunent,  Hz for frequency and R  for resis-
tance) and the measurement range. For the AC modes the
measure~nenr  uncertatnty  is *  (4% of reading + IO  units of
the last digit).

Function generator
To tom on the generator you press m the red bunon

marked PWR Select the 10  kHz range by pressing the
button marked 10k:  and select the sine wavefono  bv press-
mg the second button from the right marked wth a wave
s!mbol  No “iher  bunons  should be selected You can
safe11 tom Ihe amphrude  knob fully clockwise The fre-
quer~y  1s  selected with  the large dial on the lefl.  The &al
reading multiplied by the range selection  gives  the output
frequency. The frequency can be verified  at any tune  uah
one of the multimeters. Use the output marked MAIN,
which has  50  Q mtemal  reactance

Ferrite  cores
IJandle  the femte  cores gentI>.  the\  we  bnrrle’  Fcmte

1s 3 ceramic  magnneuc  material.  Ulth  I”\\  electnclll  conduc-
rlrwy Eddy current losses m  the cores are ihercfore  IOU

Banana jaclic
To-connect a coil lead f” a banana pck. ?ou loosen the

colored plastic  nut. place the tmned  end bewee” the metal
nut and plasuc  nut. and nghten  it  agam
Part I: Magnetic Sheilding  with Eddy Currents

F,gwe  1: E.rpe~rme,~foi  mrmgmmr  /ii).  pu”  I.
Tone-dependent

magnet,c  fields mduce
eddv torrents  III  con-
ductors. Tne edd\
cutTents I” turn pre
duce  a counterocun~
magnineuc  field In  real
conductors, tb~s lield
will not complelel>

_ counteract the spphed
lield  mslde  the mnte-
nal To describe  the
shrelding  &ccl  ofalu-

mmium  foils we \+ill  applv the followmp  model
B =  B,c-” (1)

where tl is the ma~etx  field beneath the l&ls, B, 1s  the
magnetic  field at [he sane porno  m tic  absence oifo~ls,  a
tin  attenuatton  constant, and d the fad tb~kness

Experiment
Put the femte core wth the cools,  wtb legs doun.  on

the rasad block such that co11 A 1s  directly above the
@up ccul  embedded m the platform, as sho\\n  m Fig  I
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Secure the core on the block by stretching the rubber
bands over the core  and under the block recess. The un-
certainty in the thickness of the foils can be neglected. as
can the error  in the frequency when measured by the mul-
timeter.

I(1) = I, sin Of (5)
where o is the angular frequency and b is the anplitude  of

* the current. As follows from  equation (3),  this alternating
current will induce a voltage across the coil give” by

E(t) = O&IO  MS 01 (6)
The current will be such that the induced voltage is equal
to the @anal generator voltage VK There is a 90” phase
difference between the current and the voltage. If we only
look at the amplitudes E, and I0  of the alternating voltage
and current, allowing for this phase difference, we have

E, = ochi  I0 (7)
From now on we drop the subscript  0.
Two coils

I, Connect the leads for coils A and B to the jacks.
Measure the resistance of all three cods to make sure you
have good cmuections.  You should expect values of less
than 10 n.

2 Collect data to vahdate  the model  above  and evaluate
the attamatmn  constant a for the alummum  foils (25 -
175 pm), for frequencies in the range of 6 - 18 kHz.  Place
the foils inside the square. above the pickup  coil, and ap
ply a sinusmdal  voltage to coil A.

3. Plot a ws”s  frequency.
Part II: Magnetic Flux  Linkage

The response of two  coils on a closed ferrite core  to a”
elitema  alternating voltage (V,)  from  a sinusoidal signal
generator is studied. With  the equipment provided, we
may assume  that saturation effects can be ignored. and the
pcnneabllit!  p of the matenal  1s  constant.

Them?
I” the following basic  theoretud  discussion, and in the

treatment of the data. it is assumed that the ohrmc  resis-
tance in the hvo  coils and all hysteresis effects in the core
have insigniticant  mfluence  on the measured currents and
voltages. Because of these stiphticarmns  1” the treatment
below, some deviauons  wll occur between measured and
calculated values

Single coil
Let us fast  look at a core with a single coil, carrying a

current I. The magnetic flux  0,  that the current creates in
the ferrite core inside the coil; is proportional to the CUT-
rent I and  to the “umber of turns  .Y The flux depends
furthermore on 3 pcunrtncal  factor g; which 1s determined
by the sue and shape of the core;  and the magnetic penne-
abihty  p =H  p,,, which describes the mag”etlc  properties of
the core  material.  The relative pemxablllty  is denoted p,
and h is the permeability of Gee space.

The magnetic flux Q 1s thus given b)
Q,  = pg,VI  = cNI (2)

where c =  pg  The induced voltage 1s give” by Faraday’s
law of inductlo”,

E(I) =  - N !!!EQ = -&** ( 3 )
dt d t

The  conventional way to descnb-e  the relatmns~p  be-
tween current and voltage for a call  1s through the self-
inductance of the coil L, defined by,

Let us now assume that we have two coils on one core
(see Figure 2). Ferrite cores can be used to link magnetic
flux between coils. I” an ideal core the flux will be the
same for all cross sections of the core. Due to flux leakage
m real cores,  a second co11  on the core  will in general ex-
perience .s  reduced flux compared to the flux-generating
coil. The flus  Q  in the secondary coil B 1s therefore re-
lated to the flus @,  in the pnmar?  cod A through

OB=kOiD* (8)
Similarly a flux  component Q’s  created by a current m coil
B will create  a flus 0’*  = kQ,  in cod A The  factor k,
which is called the couplmg  factor, has a value less than
one

The femte  core under study has two coils A and B I”  a
transformer arrangement. Let us assume that coil A 1s  the
pmnary  coil (connected to the signal generator). If no cut-
rent flows in co11 B (I,=O), the induced voltage E, due to
I, 1s equal and opposite to the generator voltage Vr The
flux  created by IA  inside the secondary coil is determined
by equation (8) and the induced voltage in coil B is

E, = okcN,N,I, (9)
Figrm  2: .4  rransfomer  n’ith  a closed magnetic circtrir.

If a current I, flows m coil B, it
will induce a voltage in coil A whxh
is described  by a smular  expression.
The total voltage acmss  the coil A
will then be g,ve”  by

L--I V,= E, = oc.‘?J- wkcN,N$,  .

I I
(10)

The current in the secondary coil
thus induces a” opposing voltage i” the primary  ~011; lead-
ing to an increase in Iti  A similar  equation can  be wntte”
for E,. As can be ventied  by measurements, k IS mdepen-
dent of which coil is taken  as the pw  coil.

Experiment
Place the two U-cores together as shown m Figure 2,

and fasten them with the rubber  bands. Set the fimctmn
generator to produce a 10 kHz  sine wave. Remember to
set the multinxters  to the most sensitive range suitable for
each measurement. The number of turns  of the hvo  coils,

A sinusoidal signa!  generator connected to the coil wll
drive  a current  through It given by
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AandB,are:N,=  150hnnsand.N,=  lOOtums(+9  turn
on each coil).

1. Show that the algebraic expressions for the self-
inductances L, and Lr,  are,

L, = E~/(wI,J  when I, = 0
L, = E$jd,)  when I, = 0

and that  expressions for the coupling factor k are,
k = W,Y(NJ,J

w,hen  E, = 0
Draw circuit diagrams showmg  how these quantittes  arc

determined. Calculate the numerical values of L,, & gi  k
2. When the secondary co11  is short-circuited, the cur-

rent IP  in the primary coil will increase Use the equations
above to derive an expression giving IP  explicitly in tetms
of the primary voltage, the self-inductance of the primary
coil, and the coupling constant Measure IP.

3. Coils A and B can be connected in series in two dif-
ferent ways such that the two flux  contributions are either
added to or subtracted from  each other

3.1. Find the self mductance  of the serially  connected
coils, L,,, from measured quantittes  m the case where the
flux contnbuttons  produced by the current I m the hvo

coils add to (strengthen) each other.
3.2. Measure the voltages V, and J, when the flux

contributions  of the two corls  oppose each other. Fmd
theu  values and the ratto  of the voltages, Derive an ex-
pression for the ratto  of the voltages across the nvo  coils

4. Wse  the results obtamed  to verify  that the self induc-
tance of a coil is proportional to the square of the number
of rts  windings.

Ag  3: Ti1efb-lre cores wvrh  the  M’o  spacers 111 place.
5. verify that rt was  Justified  to neglect the reststance

of the prime coil and ante vour
arguments as mathematical ex-
pressions.

6 llun  p~rccs  of paper n-
serted  between the hvo  half cores
(as shown m Figure 3) reduce the
coil mductances  drastically. Use
this reducrron  to determine the
relative permcabilitV  m, of the

ferrite material, given Ampere’s law and continuity of the
magnetic field B across the ferrite - paper interface. As-
sume m = m, = 4~’ IO”  ,l’s’/I.? for the pteces  of paper and
a paper thickness of 43 mm The geometncol  factor can be
determined from  Ampere’s law

P -!-  Bdl  = iioio,
11,

where I,& is the total current flowmg  through  a surface
bounded by the mtegration  path. Write the algebraic ex-
pression  for m, in field  6.a on the answer sheet and the
numertcal  value.

570 PH 111




