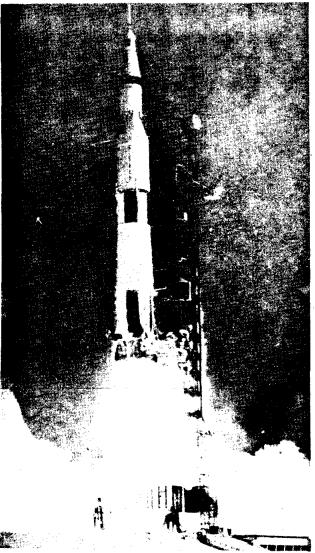


# 9.1 หลักการส่งจรวด, ยานอวกาศ และอุปกรณ์ในการสำรวจ

กอดดาร์ด (R.H. Goddard) นักวิศวกรชาวอเมริกัน เป็นคนแรกที่บุกเบิกการส่ง ยานอวกาศสู่นอกโลก เขาได้เขียนลงในหนังสือ "Smithsonian Pubblication No. 2540" ในปี ค.ศ. 1920 โดยเขียนเรื่อง "A Method of Reaching Extreme Altitude" ในวันที่ 16 มีนาคม ค.ศ. 1926 เขาได้ส่งจรวดลำแรกที่ใช้เชื้อเพลิงเหลวขึ้นสู่ท้องฟ้าเป็นผลสำเร็จ หลังจากนั้นต่อมา ในสงครามโลกครั้งที่ 2 ฟอน เบราน์ (Wernher Von Braun) แห่งเยอรมัน ได้สร้างจรวด วี – 2 ที่เกาะพีนีมุนด์ (Peenemunde) ในทะเลบอลติค และใช้ยิงโจมตีประเทศอังกฤษในระหว่าง สงครามโลกครั้งที่ 2 หลังจากสงครามโลกครั้งที่ 2 ได้ยุติลง สหรัฐอเมริกาและรัสเซียได้ขน จรวด วี – 2 ไปใช้ทดลองส่งจรวดขึ้นสู่ท้องฟ้าเพื่อใช้ในการทดลองวิทยาศาสตร์ หลังจากนั้น เป็นด้นมามนุษย์ได้เริ่มเข้าสู่ยุคอวกาศ

เครื่องบินสามารถลอยอยู่ในอากาศได้โดยอาศัยแรงพยุงตัวของอากาศ และอาศัยแก๊ส ออกซิเจนในอากาศเพื่อช่วยในการเผาไหม้ทำให้เกิดแรงขับดันไปข้างหน้าได้ สำหรับการเดิน ทางในอวกาศนั้น เราไม่สามารถอาศัยแรงพยุงตัวของอากาศหรือแก๊สออกซิเจนในอวกาศ เพื่อใช้ในการขับเคลื่อนไปในอวกาศได้ หลักการขับเคลื่อนของจรวดนั้นใช้กฏข้อที่ 3 ของนิวตัน ที่กล่าวว่า "ถ้าเราออกแรงกระทำต่อวัตถุ จะมีแรงปฏิกิริยา (ซึ่งมีขนาดเท่ากับแรงกระทำ) มา กระทำต่อเราในทิศทางตรงข้ามเสมอ" เช่น เมื่อเครื่องยนด์จรวดเผาไหม้เชื้อเพลิง แก๊สร้อนซึ่ง เกิดจากการลุกไหม้ของเชื้อเพลิงจะถูกแรงดันขยายตัวให้พุ่งออกทางท้ายจรวดด้วยความเร็วสูง มาก (แรงอันนี้ก็คือแรงกระทำ) ทำให้เกิดแรงปฏิกิริยาในทิศทางตรงกันข้าม (หรือแรงผลักดัน) ทำให้จรวดเคลื่อนที่ไปข้างหน้าได้


วัตถุทุกชนิดสามารถอยู่บนพื้นผิวโลกได้เนื่องจากแรงโน้มถ่วงของโลกกระทำต่อวัตถุ ต่าง ๆ ถ้าเราต้องการส่งจรวดสู่ อวกาศ จรวดจะต้องเอาชนะแรงโน้มถ่วงของโลกให้ได้ นั่นคือ จรวดจะต้อิงเคลื่อนที่ด้วยความเร็วสูงกว่าความเร็วอันหนึ่ง ความเร็วนี้มีชื่อเรียกว่า ความเร็ว ของการผละหนี (escape velocity) สำหรับบนพื้นผิวโลกความเร็วของการผละหนีมีค่าเท่า กับ 11.2 กิโลเมตรต่อวินาที นั่นคือ จรวดจะต้องเคลื่อนที่ด้วยความเร็วมากกว่า 11.2 กิโลเมตร ต่อวินาที จรวดนี้จึงจะพันจากแรงดึงดูดของโลก

ความเร็วของการผละหนีของดาวเคราะห์ต่าง ๆ มีค่าไม่เท่ากัน ขึ้นอยู่กับค่าแรงโน้มถ่วง ของดาวเคราะห์นั้น ๆ สำหรับดวงจันทร์ค่าความเร็วของการผละหนีเท่ากับ 2.4 กิโลเมตรต่อ วินาที อนุภาคของแก๊สต่าง ๆ ในบรรยากาศของดวงจันทร์เคลื่อนที่เร็วกว่าค่าความเร็วของการ ผละหนึ่งองดวงจันทร์ ดังนั้น บรรยากาศของดวงจันทร์จึงเบาบางมากจนเป็นสูญญากาศ

การส่งยานอวกาศออกไปสู่อวกาศ เราจะต้องให้จรวดขับเคลื่อนจากหยุดนิ่งขึ้นตาม แนวดิ่งโดยการเร่งตัวมันเองให้เร็วขึ้น ๆ จนหลุดพันชั้นบรรยากาศที่หนาแน่นบนพื้นผิวโลก (สูง ประมาณ 100 กิโลเมตรขึ้นไปจากพื้นดิน) ต่อจากนั้นให้มันมีความเร็วมากกว่า 11.2 กิโลเมตร ต่อวินาที แล้วดับเครื่องยนต์จรวด ยานอวกาศจะเคลื่อนที่ออกไปจากโลกเรื่อย ๆ โดยไม่ต้องใช้ พลังงานขับดันอีกเลย และยานอวกาศนี้ก็จะไม่ตกกลับมาสู่โลกอีก ถ้าต้องการให้ยานอวกาศนี้ ออกนอกระบบสุริยะ ยานอวกาศนี้ต้องเคลื่อนที่ด้วยความเร็วมากกว่า 43.2 กิโลเมตรต่อวินาที (ถวามเร็วของการผละหนีจากระบบสุริยะเท่ากับ 43.2 กิโลเมตรต่อวินาที และความเร็วของ การผละหนีจากดวงอาทิตย์เท่ากับ 617.6 กิโลเมตรต่อวินาที)

ถ้าความเร็วของยานอวกาศไม่ถึง 11.2 กิโลเมตรต่อวินาที ยานอวกาศนั้นไม่สามารถ หลุดพ้นจากแรงโน้มถ่วงของโลกได้ ซึ่งเป็นผลทำให้ยานอวกาศนี้โคจรรอบโลกเป็นรูปวงรีรอบ จุดศูนย์กลางของโลก ยานอวกาศ (หรืออุปกรณ์) ที่โคจรรอบโลกไม่ตกกลับลงมาสู่ผิวโลกอีก เราเรียกว่า ดาวเทียม (artificial satellite) ของโลก ดาวเทียมนี้จะต้องโคจรด้วยความเร็วในวง โคจรเฉพาะค่าหนึ่ง (*sายละเอียดดูในหัวข้อที่ 9.2*) ความเร็วต่ำสุดที่วัตอุเคลื่อนที่รอบจุดศูนย์ กลางของโลกเป็นรูปวงกลมแล้วไม่ตกลงมาสู่พื้นผิวโลกอีกมีชื่อเรียกว่า ความเร็วงกลม (circular velocity) เช่น ความเร็วที่พื้นผิวโลกเท่ากับ 7.9 กิโลเมตรต่อวินาที หมายความว่า ถ้า ดาวเทียมโคจรรอบโลกที่ผิวโลกจะต้องใช้ความเร็วเท่ากับ 7.9 กิโลเมตรต่อวินาที แต่ในทาง ปฏิบัตินั้น ดาวเทียมดวงนี้โคจรได้ไม่นานเนื่องจากมันไปเสียดสึกับอากาศจะทำให้ความเร็ว ของดาวเทียมลดลงและจะตกสู่พื้นผิวโลกตามเดิม ถ้าต้องการให้ดาวเทียมโคจรรอบโลกเป็น ระยะเวลานาน ๆ เราต้องส่งให้มันอยู่สูงพันจากบรรยากาศที่หนาทีบจนไม่มีบรรยากาศมาเสียด ทานดาวเทียมได้ นั่นคือ จะต้องส่งให้มันอยู่สูงจากพื้นดินมาก ๆ ค่าความเร็ววงกลมรอบโลก ของการโคจรรอบโลกพื้นผิวโลก ยิ่งสูงค่าความเร็ววงกลมรอบโลกจะมีค่าน้อยลง คาบเวลา ของการโคจรรอบโลกขึ้นผิวโลก ยิ่งสูงค่าความเร็วงกลมรอบโลกจะมีค่าน้อยลง คาบเวลา 85,680 กิโลเมตรจากพื้นผิวโลก ดาวเทียมดวงนี้จะมีคาบเวลาในการโคจรรอบโลกเท่ากับ 24 ชั่วโมง นั่นคือ เราจะเห็นดาวเทียมดวงนี้ปรากฏอยู่บนท้องฟ้าคงที่ตลอดเวลา


บัจจุบันนี้การส่งยานอวกาศหรืออุปกรณ์ต่าง ๆ ใช้จรวดหลายชั้น โดยยานอวกาศหรือ อุปกรณ์ต่าง ๆ อยู่ส่วนบนสุดของจรวด จรวดขึ้นสู่อวกาศจากฐานในแนวดิ่ง เมื่อจรวดชั้นแรก ใช้เชื้อเพลิงหมดมันจะดีดตัวเองหลุดออกไป จรวดชั้นต่อมาก็จะขับดันต่อไป ความเร็วของจรวด เพิ่มมากขึ้นเรื่อย ๆ จนกระทั่งถึงระยะสูงที่กำหนดไว้ จรวดก็จะเลี้ยวเข้าสู่วงโคจรรอบโลก จรวดชั้นสุดท้ายจะขับดันจนตัวมันเองมีความเร็วเท่ากับความเร็ววงกลมรอบโลกที่ระดับนั้น เครื่องยนต์จรวดก็จะหยุดทำงาน (อาจจะดีดตัวเองออกหรือติดกับยานอวกาศก็ได้) ยานอวกาศ ก็จะโคจรรอบโลกตลอดไปในสภาพที่ไม่ต้องใช้แรงขับดันช่วยอีก

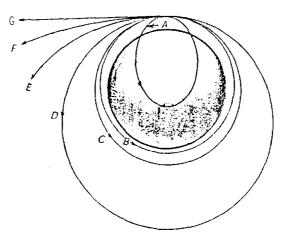


รูปที่ 9.1 แสดงถึงจรวดแซตเทิร์น 5 นำยานอะพอลโล 11 ขึ้นสู่อวกาศ จรวดหนักทั้งหมด 2.850 ตัน (รวมทั้งเชื้อเพลิง) PH 106

## 9.2 ดาวเทียม

เป็นสิ่งประดิษฐ์ชนิดหนึ่งที่มนุษย์ได้ทำขึ้นมาเพื่อให้มันโคจรรอบโลก ดาวเทียมบางดวง ไม่สามารถอยู่บนท้องฟ้าได้เป็นเวลานาน ๆ เนื่องจากความเสียดทานที่ดาวเทียมกระทำต่ออากาศ ทำให้มันสูญเสียพลังงาน ในที่สุดมันจะตกลงมาสู่ชั้นของบรรยากาศที่หนาแน่น ซึ่งที่นี่จะมีความ เสียดทานสูงจนทำให้เกิดความร้อนเผาใหม้ดาวเทียมให้หมดไปอย่างสมบูรณ์ ถ้าดาวเทียม สามารถโคจรรอบนอกบรรยากาศของโลกได้ มันจะยังคงโคจรรอบโลกตลอดกาลนานเป็นเช่น วัตถุดาราศาสตร์ชนิดหนึ่ง




รูปที่ 9.3 แผนภาพเขียนโดยนิวตัน ในหนังสือ De mundi systematic ตีพิมพ์ในปี ค.ศ. 1731

รูปที่ 9.2 การส่งดาวเทียมมีหลักการคล้ายกับการยิงลูกปืน

หลักการส่งดาวเทียมขึ้นไปโคจรบนท้องฟ้าอย่างง่าย ๆ มีดังนี้ สมมติเราอยู่บนภูเขา ลูกหนึ่งแล้วยิงปืนในทิศทางที่ขนานกับพื้นผิวโลก ตามรูปที่ 9.2 (ซึ่งดัดแปลงมาจากแผนภาพที่ เขียนโดยนิวตัน (*รูปที่ 9.3*)) และสมมติอีกว่า ไม่มีแรงเสียดทานของอากาศและวัตถุ (เช่น ภูเขา, สิ่งก่อสร้าง เป็นต้น) กีดขวางทางวิ่งของลูกปืน ดังนั้นจะมีแรงเพียงแรงเดียวที่กระทำต่อลูกปืน ภายหลังจากที่มันวิ่งออกมาจากปากกระบอกปืน คือ แรงโน้มถ่วงของโลกที่กระทำต่อลูกปืน เท่านั้น ถ้าลูกปืนมีความเร็วต้น V<sub>a</sub>, ลูกปืนเคลื่อนที่ออกจากปากกระบอกปืนเป็นเส้นตรง ใน ขณะเดียวกันแรงโน้มถ่วงของโลกที่กระทำต่อลูกปืนจะทำให้ลูกปืนเคลื่อนที่ด้วยความเร่งในทิศ ทางลงสู่พื้นดิน ดังนั้นมันจะชนพื้นดินที่จุด a ถ้าลูกปืนมีความเร็วต้น V<sub>b</sub> ซึ่งมากกว่า V<sub>a</sub> ลูก ปืนจะชนพื้นดินที่จุด b แต่ถ้าลูกปืนมีความเร็วต้น V<sub>c</sub> ซึ่งมากเพียงพอที่จะทำให้มันเกิดความ เร่งในทิศทางขนานกับพื้นดิน แต่เนื่องจากความโค้งของพื้นผิวของโลกทำให้ลูกปืนเคลื่อนที่โค้ง ไปตามพื้นผิวของโลกด้วยระยะทางความสูงเหนือพื้นดินเดียวกัน ในที่สุดมันจะเคลื่อนที่เป็น วงกลมครบรอบสมบูรณ์ ความเร็ว V<sub>c</sub> มีชื่อเรียกว่า ความเร็ววงกลม ซึ่งมีค่าประมาณ 8 กิโลเมตรต่อวินาที (ตัวเลขนี้ขึ้นอยู่กับระยะทางที่สูงจากพื้นดิน)

#### ก. วงโคจรของดาวเทียม

หลักการส่งดาวเทียมขึ้นไปโคจรรอบโลกอย่างง่าย ๆ คือ ส่งจรวดขึ้นไปในแนวติ่งระดับ ความสูงสองสามร้อยไมล์ เสร็จแล้วเบนตัวจรวดให้ขนานกับพื้นดิน ขั้นสุดท้ายจุดเชื้อเพลิงจรวด ให้มีความเร็วต้นตามที่ต้องการและผลักดันให้ดาวเทียมออกไป ขนาดและรูปร่างของวงโคจร ของดาวเทียมขึ้นอยู่กับทิศทางที่แน่นอน และความเร็วต้นของจรวดที่ผลักดันให้ดาวเทียมหลุด ออกไป ชนิดของวงโคจรของดาวเทียม สามารถแสดงได้ในรูปที่ 9.4



รูปที่ 9.4 วงโคจรที่แตกต่างกันของดาวเทียมเป็นผลมาจากความเร็วเริ่มต้นของดาวเทียมที่แตกต่างกัน แต่ ความเร็วเริ่มต้นมีทิศขนานกับพื้นผิวของโลก ถ้าอัตราความเร็วต้นของดาวเทียมน้อยกว่าความเร็ววงกลมในวงโคจรของมัน วงโคจร ของดาวเทียมจะเป็นรูปวงรีโดยมีจุดศูนย์กลางของโลกอยู่ที่จุดโฟกัสหนึ่งของรูปวงรี จุดอะโพจี (apogee : เป็นจุดที่อยู่ไกลจากจุดศูนย์กลางของโลกมากที่สุด) ของวงโคจร จะอยู่ที่ตำแหน่ง เริ่มต้นเคลื่อนที่ และจุดเพอริจี (perigee : เป็นจุดที่อยู่ใกล้จุดศูนย์กลางของโลกมากที่สุด) จะอยู่ ที่จุดกึ่งกลางรอบวงโคจรจากจุดเริ่มต้น

ถ้าอัตราความเร็วเริ่มต้นต่ำกว่าความเร็ววงกลมมาก ๆ รูปวงรีเกือบทั้งหมดจะอยู่ใต้ พื้นผิวโลก (จากรูปที่ 9.4 ได้แก่วงโคจร A) ในกรณีนี้ดาวเทียมโคจรเคลื่อนที่ไปเพียงส่วนน้อย ในวงโคจรของมันก่อนที่มันจะชนกับพื้นดิน (หรือส่วนมากจะถูกเผาไหม้หมดในชั้นบรรยากาศ ของโลกที่หนาแน่น) ถ้าอัตราความเร็วเริ่มต้นน้อยกว่าความเร็ววงกลมเล็กน้อย วงโคจรของ ดาวเทียมได้แก่วงโคจร B ซึ่งมันต่ำเกินไปในชั้นบรรยากาศสำหรับดาวเทียมที่จะอยู่โคจรรอบ โลกได้ยาวนาน

ถ้าอัตราความเร็วเริ่มต้นเท่ากับความเร็ววงกลม วงโคจรของดาวเทียมเป็นรูปวงกลม โดยมีจุดศูนย์กลางอยู่ที่จุดศูนย์กลางของโลก (ได้แก่วงโคจร C) และอัตราความเร็วเริ่มต้นมาก กว่าความเร็ววงกลมเล็กน้อย วงโคจรของดาวเทียมจะเป็นรูปวงรี (ได้แก่วงโคจร D) โดยมี จุดเพอริจีที่จุดเริ่มต้นและจุดอะโพจีอยู่ที่จุดกึ่งกลางรอบวงโคจรจากจุดเริ่มต้น

ถ้าอัตราความเร็วเริ่มต้นเท่ากับความเร็วของการผละหนีจากพื้นผิวโลกเข้าสู่อวกาศ (วงโคจร E) และถ้าอัตราความเร็วเริ่มต้นมากกว่านี้อีก วงโคจรของมันจะเป็นรูปไฮเปอร์โบลา (วงโคจร F) และถ้าอัตราความเร็วเริ่มต้นมากกว่านี้อีก วงโคจรของมันเกือบจะเป็นเส้นตรง (วงโคจร G)

เราสามารถคำนวณวงโคจรของดาวเทียมได้โดยใช้สมการง่าย ๆ ดังต่อไปนี้

เมื่อ

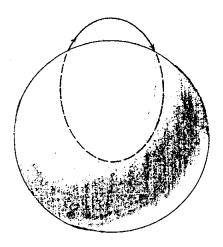
ือ V = ความเร็วเริ่มต้นของดาวเทียม หน่วย ความเร็ววงกลมที่พื้นผิวโลก

r = รัศมีของโลก

a = ครึ่งแกนยาวของวงโคจร (หรือระยะทางเฉลี่ยของขนาดของวงโคจร) หน่วย รัศมี ของโลก

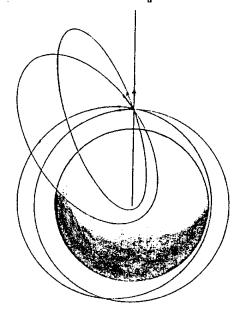
ตัวอย่างเช่น ดาวเทียมดวงหนึ่งถูกปล่อยออกมาจากจุดที่อยู่ใกล้พื้นผิวโลก (ที่ระดับความ สูง 300 กิโลเมตร) ด้วยอัตราความเร็ว V, r มีค่า 1.047 หน่วยรัศมีของโลก ดังนั้น ค่าครึ่ง แกนยาวของวงโคจร, a(เป็นการวัดขนาดของวงโคจร) สามารถคำนวณหาได้ง่ายดาย ถ้า เรารู้อัตราความเร็วเริ่มต้น

$$\frac{1}{a} \quad = \quad \frac{2}{r} \ - V^2$$


ถ้าค่า a เป็นลบ หมายถึงวงโคจรเป็นรูปไฮเปอร์โบลา จากตัวอย่างข้างบน ถ้าสมมติ ว่าอัตราความเร็วเริ่มต้นของดาวเทียมเท่ากับ 10 กิโลเมตรต่อวินาที หรือประมาณ 1.263 ใน หน่วยของความเร็ววงกลม เราสามารถหา a ได้ดังนี้

$$\frac{1}{a} = \frac{2}{1.047} - (1.263)^2 = 0.315$$
$$a = 3.17 5ัศมีของโลก$$

ดาวเทียมดวงนี้จะมีระยะทางอะโพจีประมาณ 33,760 กิโลเมตร จากจุดศูนย์กลางของ โลก หรือประมาณ 27,381 กิโลเมตร สูงจากพื้นดิน


#### ข. ขีปนาวุธ

เป็นจรวดที่ยิงจากฐานยิ่งเพื่อให้ไปตกเป้าหมายที่อยู่ไกลออกไป หลักการคือ ให้จรวด เคลื่อนที่เป็นรูปวงรีโดยมีจุดศูนย์กลางของโลกเป็นจุดโฟกัสจุดหนึ่ง เกือบทั้งหมดของวงโคจร อยู่ใต้พื้นผิวของโลก เช่น วงโคจร A ในรูปที่ 9.4 หนึ่งในสองจุดที่วงโคจรตัดกับพื้นผิวของ โลกคือจุดฐานปล่อยจรวด จรวดต้องมีอัตราความเร็วเริ่มต้นและทิศทางที่ถูกต้อง ดังนั้นจุดตัด อีกจุดหนึ่งของวงโคจรที่ตัดกับพื้นผิวของโลกจะปรากฏเป็นเป้าหมาย เมื่อปล่อยจรวดมันจะเคลื่อน ที่ไปตามส่วนของวงโคจรที่อยู่บนพื้นผิวของโลกจนกระทั่งจรวดชนพื้นผิวของโลกตามที่ได้คำนวณ ไว้ (ตามรูปที่ 9.5)



รูปที่ 9.5 วงโคจรของขีปนาวุธ

การคำนวณความแม่นยำของการยิงจรวดนั้น มีความยุ่งยากมาก เช่น ความผิดปกติ เล็กน้อยของสัณฐานของโลก, ความหน่วงของบรรยากาศของโลกทำให้ความเร็วของจรวดช้าลง และผลเนื่องมาจากโลกหมุนรอบตัวเอง (โปรดดูหัวข้อที่ 2.2) อย่างไรก็ตาม หลักการสำคัญ ที่ง่าย ๆ ได้บรรยายมาแล้วและอธิบายอย่างสมบูรณ์โดยนิวตัน



รูปที่ 9.8 วงโคจรที่แตกต่างกันของดาวเทียมซึ่งเป็นผลมาจากความเร็วเริ่มต้นเดียวกัน แต่มีทิศทางเริ่มต้น แตกต่างกัน วงโคจรทั้งหมดมีแกนยาวเท่ากัน

## 9.3 โครงการสำรวจดาวเคราะห์

ประเทศที่มีชื่อเสียงมากที่สุดในโลกในด้านการสำรวจดาวเคราะห์ คือ ประเทศสหรัฐ-อเมริกา และประเทศรัสเซีย ประเทศทั้งสองแข่งขันกันส่งยานอวกาศที่มีมนุษย์ควบคุมและไม่มี มนุษย์ควบคุม, ดาวเทียม, หอปฏิบัติการลอยฟ้า ขึ้นสู่อวกาศเป็นจำนวนมาก ในหัวข้อนี้จะ ได้กล่าวถึงโครงการอวกาศที่น่าสนใจของประเทศทั้งสองในการสำรวจดาวเคราะห์บางโครง-การเท่านั้น

ประเทศสหรัฐอเมริกามีโครงการส่งยานอวกาศที่ไม่มีมนุษย์ควบคุมทั้งหมด 7 โครงการ คือ โครงการเรนเจอร์ (Ranger), โครงการลูนาร์ออบิเตอร์ (Lunar orbiter), โครงการเซอร์-เวเยอร์ (Surveyor), โครงการไพโอเนียร์ (Pioneer), โครงการมาริเนอร์ (Mariner), โครง- การไวกิง (Viking) และโครงการวอยเอเจอร์ (Voyager) รายละเอียดของโครงการทั้งหมด มีดังนี้ สามโครงการแรกเป็นยานอวกาศสำรวจดวงจันทร์ โครงการไพโอเนียร์สำรวจทั้ง ดวงจันทร์และดาวเคราะห์ ส่วนโครงการที่เหลือเป็นยานอวกาศที่ใช้สำรวจดาวเคราะห์โดย เฉพาะ นอกจากนี้ประเทศสหรัฐอเมริกาได้ส่งดาวเทียมเอกซ์พลอเรอร์ – 35 (Explorer – 35) ในวันที่ 19 กรกฎาคม ค.ศ. 1967 ไปโคจรรอบดวงจันทร์ เพื่อวัด "หาง" ของสนามแม่เหล็ก ของโลก

## ดารางที่ 9.1 โครงการไพโอเนียร์

| Craft     | Launch date          | Remarks                                                                                                                                             |            |                             |                                                                                                                                |
|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| vioneer   | August 17, 1958      | Launch failure                                                                                                                                      | Pioneer    | September 25,               | Intended lunar orbiter; launch                                                                                                 |
| vioneer 1 | October 11, 1958     | Intended lunar orbiter, to send                                                                                                                     | I folioti  | 1960                        | failure                                                                                                                        |
|           |                      | back TV pictures. Fell short<br>due to insufficient thrust, but<br>reached 70,717 miles (113,800                                                    | Pioneer    | December 15,<br>1960        | Intended lunar orbiter; launch failure                                                                                         |
|           |                      | km) from Earth, mapping extent<br>of Van Allen radiation belts                                                                                      | Pioneer 6  | December 16, 1965           | Interplanetary probe, orbiting<br>Sun between Earth and Venus                                                                  |
| Pioneer 2 | November 8,<br>1958  | As Pioneer 1. Launch failure                                                                                                                        | Pioneer 7  | August 17, 1966             | Interplanetary probe, orbiting<br>Sun between Earth and Mars;                                                                  |
| Pioneer 3 | December 6,<br>1958  | Intended lunar flyby;<br>insufficient launch thrust.                                                                                                |            |                             | with Pioneer 6 monitored<br>solar activity                                                                                     |
|           |                      | Reached 63,580 miles (102,300<br>km) from Earth, mapping<br>intensity variations of Van Allen<br>radiation belts<br>Passed 37,300 miles (60,000 km) | Pioneer 8  | December 13,<br>1967        | Interplanetary probe; orbiting<br>Sun slightly farther than Earth                                                              |
| Pioneer 4 | March 3, 1959        |                                                                                                                                                     | Pioneer 9  | <b>No</b> vember 8,<br>1968 | Interplanetary probet orbiting<br>Sun between Earth and Venus                                                                  |
|           |                      | from Moon                                                                                                                                           | Pioneer E  | August 27, 1969             | Intended interplanetary                                                                                                        |
| Pioneer   | November 26,<br>1959 | Intended lunar orbiter; launch failure                                                                                                              |            |                             | monitor; launch failure                                                                                                        |
|           |                      |                                                                                                                                                     | Pioneer 10 | March 3, 1972               | Bypassed Jupiter at 81,000                                                                                                     |
| Pioneer 5 | March 11, 1960       | Interplanetary probe, orbiting<br>Sun between Earth and Venus;<br>sent data on solar flares and<br>particles until June 26, 1960                    |            |                             | miles (130,000 km) on<br>December 3, 1973. Now on a<br>trajectory that will eventually<br>take it out of the solar system      |
|           | ······               |                                                                                                                                                     | Pioneer 11 | April 5, 1973               | Bypassed Jupiter at 26,725 miles<br>(43,000 km) on December 3,<br>1974. Now on path that will take<br>it to Saturn in mid-1979 |

โครงการไพโอเนียร์ ยานอวกาศในโครงการนี้ถูกส่งออกไปสู่อวกาศเพื่อสำรวจระบบ สุริยะ ยานอวกาศไพโอเนียร์ – 1 ถึง 4 ใช้สำรวจดวงจันทร์ ยานอวกาศไพโอเนียร์ – 5 ถึง 9 ใช้วัดรังสีจากดวงอาทิตย์ในห้วงอวกาศระหว่างดาวเคราะห์ การเปลี่ยนแปลงของสนามแม่เหล็ก ในห้วงอวกาศระหว่างดาวเคราะห์ ส่วนยานอวกาศไพโอเนียร์ – 10 และ 11 ไปสำรวจดาว พฤหัส และยานอวกาศไพโอเนียร์ - 12 และ 13 สำรวจดาวศุกร์และปล่อยยานตรวจสอบ บรรยากาศของดาวศุกร์ รายละเอียดของโครงการนี้ได้แสดงในตารางที่ 9.1

โครงการเรนเจอร์ โครงการอวกาศชุดนี้สหรัฐอเมริกาส่งขึ้นไปสู่อวกาศเพื่อถ่ายภาพ พื้นผิวของดวงจันทร์โดยเฉพาะ ก่อนที่ยานอวกาศจะพุ่งเข้าชนพื้นผิวของดวงจันทร์ โครงการ เรนเจอร์มียานอวกาศทั้งหมด 9 ลำ ดังแสดงในตารางที่ 9.2

**ตารางที่ 9.2** โครงการเรนเจอร์

| Probe    | Launch date          | Remarks                                                                    |
|----------|----------------------|----------------------------------------------------------------------------|
| Ranger 1 | August 23, 1961      | Test launch into Earth orbit                                               |
| Ranger 2 | November 18,<br>1961 | Test launch into Earth orbit                                               |
| Ranger 3 | January 26, 1962     | Missed Moon on January 28 by<br>22,862 miles (36,793 km)                   |
| Ranger 4 | April 23, 1962       | Impacted Moon's far side on<br>April 26; on-board command<br>system failed |
| Ranger 5 | October 18, 1962     | Missed Moon on October 21 by<br>450 miles (724 km)                         |
| Ranger 6 | January 30, 1964     | Impacted Moon February 2;<br>television system failed                      |
| Ranger 7 | July 28, 1964        | Impacted Moon July 31;<br>returned 4,308 photographs                       |
| Ranger 8 | February 17,<br>1965 | Impacted Moon February 20;<br>returned 7,137 photographs                   |
| Ranger 9 | March 21, 1965       | Impacted Moon March 24;<br>returned 5,814 photographs                      |

โครงการลูนาร์ออบิเตอร์ โครงการอวกาศชุดนี้สหรัฐอเมริกาต้องการให้ยานอวกาศ โคจรรอบดวงจันทร์ พร้อมทั้งถ่ายภาพพื้นผิวของดวงจันทร์ทั้งหมดทั้งด้านหน้าและด้านหลัง ยาน อวกาศแต่ละลำมีกล้องถ่ายรูปสองกล้องเพื่อถ่ายภาพละเอียดและภาพมุมกว้าง ยานอวกาศ สามลำแรกโคจรรอบเส้นศูนย์สูตรของดวงจันทร์และถ่ายภาพดวงจันทร์บริเวณเส้นศูนย์สูตร ส่วนยานอวกาศลูนาร์ออบิเตอร์ – 4 และ 5 โคจรรอบดวงจันทร์ตามแนวขั้วของดวงจันทร์ ดังนั้น มันจึงสำรวจทั่วดวงจันทร์ทั้งดวง รายละเอียดของโครงการนี้แสดงในตารางที่ 9.3

246

## ตารางที่ 9.3 โครงการลูนาร์ออบิเตอร์

| Probe           | Launch date         | Remarks                                                               |  |
|-----------------|---------------------|-----------------------------------------------------------------------|--|
| Lunar OrBiter 1 | August 10, 1966     | Entered lunar orbit August 14;<br>impacted Moon October 29            |  |
| Lunar Orbiter 2 | November 6,<br>1966 | Entered lunar orbit November<br>10; impacted Moon October 11,<br>1967 |  |
| Lunar Orbiter 3 | February 4, 1967    | Entered lunar orbit February 8;<br>impacted Moon October 9            |  |
| Lunar Orbiter 4 | May 4, 1967         | Entered lunar orbit May 8;<br>impacted Moon October 6                 |  |
| Lunar Orbiter 5 | August 1, 1967      | Entered lunar orbit August 52<br>impacted Moon January 31, 1968       |  |

โครงการเซอร์เวเยอร์ เป็นโครงการอวกาศของสหรัฐอเมริกา จุดประสงค์ของโครง-การนี้เพื่อให้ยานอวกาศลงสู่พื้นผิวของดวงจันทร์โดยไม่บุบสลาย เพื่อเตรียมบุกเบิกให้กับโครง-การอะพอลโล (apollo) ซึ่งเป็นโครงการส่งมนุษย์ลงสู่พื้นผิวของดวงจันทร์ต่อไป รายละเอียด ของโครงการแสดงในตารางที่ 9.4

## **ตารางที่ 9.4** โครงการเซอร์เวเยอร์

| Probe      | Launch date           | Remarks                                                                                                                                                                                                                                  |
|------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surveyor 1 | May 30, 1966          | Landed in Oceanus Procellarum<br>near crater Flamsteed on June 2<br>Returned 11,150 photographs<br>until July 13                                                                                                                         |
| Surveyor 2 | September 20,<br>1966 | Impacted Moon September 23<br>southeast of crater Copernicus<br>after control system failed                                                                                                                                              |
| Surveyor 3 | April 17, 1967        | Landed in Oceanus Procellarum<br>on April 20. Surface sampler<br>dug in lunar soil. Returned<br>6,315 pictures until May 3.<br>Visited by Apollo 12 astronauts<br>in November 1969                                                       |
| Surveyor 4 | July 14, 1967         | Landed in Sinus Medii on<br>July 17. Radio contact lost<br>prior to touchdown                                                                                                                                                            |
| Surveyor 5 | September 8,<br>1967  | Landed by remote control from<br>Earth in southern Mare<br>Tranguillitatis on September 11.<br>Carried box to analyze soil by<br>bombardment with alpha<br>particles. Returned 18,006<br>photographs until September 24                  |
| Surveyor 6 | November 7,<br>1967   | Landed in Sinus Medii on<br>November 10. Analyzed soil<br>with alpha-scattering device<br>Landing rockets refired on<br>November 17, causing Surveyor<br>to lift off and resettle 8 feet<br>(2.5 m) away. Returned 30,000<br>photographs |
| Surveyor 7 | January 7, 1968       | Landed near crater Tycho on<br>January 10. First highland<br>landing. Carried sampling scoop<br>and chemical analysis device.<br>Returned 21,000 photographs                                                                             |

โครงการมาริเนอร์ โครงการอวกาศชุดนี้สหรัฐอเมริกาส่งไปสำรวจดาวเคราะห์ต่าง ๆ โดยเฉพาะ ยานอวกาศมาริเนอร์ – 2 เป็นยานอวกาศลำแรกที่เดินทางไปถึงดาวเคราะห์ดวง อื่น ๆ และดาวศุกร์เป็นผลสำเร็จ ยานอวกาศมาริเนอร์ – 4 เป็นยานอวกาศลำแรกที่ส่งข้อมูล ดาวอังคารกลับสู่โลก ยานอวกาศมาริเนอร์ – 10 เป็นยานอวกาศลำแรกที่ไปสู่ดาวเคราะห์สอง ดวงโดยโคจรผ่านดาวศุกร์ไปสู่ดาวพุธ ทำให้นักดาราศาสตร์ได้เห็นรายละเอียดบนพื้นผิวของ ดาวพุธเป็นครั้งแรก หลังจากนั้นมันเคลื่อนเข้าใกล้วงโคจรรอบดวงอาทิตย์ ยานอวกาศมาริ-เนอร์ – 11 และ 12 เดินทางไปสำรวจดาวพฤหัสและดาวเสาร์ซึ่งถึงดาวเคราะห์ทั้งสอง ในปี ค.ศ. 1979 และ 1981 ตามลำดับ รายละเอียดดังแสดงในตารางที่ 9.5

| Probe      | Launch date          | Remarks                                                                                                                                               |  |
|------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mariner 1  | July 22, 1962        | Launch failure; intended Venus<br>probe                                                                                                               |  |
| Mariner 2  | August 26, 1962      | Flew past Venus December 14<br>at a distance of 21,594 miles<br>(34,752 km)                                                                           |  |
| Mariner 3  | November 5,<br>1964  | Intended Mars probe; contact<br>lost because spacecraft shroud<br>failed to jettison                                                                  |  |
| Mariner 4  | November 28,<br>1964 | Flew past Mars July 14, 1965, at<br>a distance of 6,118 miles<br>(9,846 km)                                                                           |  |
| Mariner 5  | June 14, 1967        | Flew past Venus October 19,<br>1967, at a distance of 2,480 miles<br>(3,990 km)                                                                       |  |
| Mariner 6  | February 25, 1969    | Flew past Mars July 31 at a distance of 2,120 miles (3,412 km)                                                                                        |  |
| Mariner 7  | March 27, 1969       | Flew past Mars August 5 at a distance of 2,190 miles (3,534 km)                                                                                       |  |
| Mariner 8  | May 8, 1971          | Launch failure                                                                                                                                        |  |
| Mariner 9  | May 30, 1971         | Went into Mars orbit<br>November 13                                                                                                                   |  |
| Mariner 10 | November 3,<br>1973  | Flew past Venus February 5,<br>1974, at a distance of 3,585 miles<br>(5,769 km); passed Mercury on<br>March 29 at a distance of 431<br>miles (694 km) |  |

โครงการไวกิง โครงการนี้มียานสำรวจ 2 ลำคือ ยานอวกาศไวกิง – 1 และ 2 จุด-ประสงค์ของโครงการนี้คือ การสำรวจสิ่งมีชีวิตบนดาวอังคาร ยานอวกาศไวกิงแต่ละลำ ประกอบด้วยยานสองส่วนคือ ยานโคจรรอบ ๆ ดาวอังการ และยานสำรวจพื้นผิวของดาวอังการ

# ตารางที่ 9.8 โครงการไวกิง

| Probe    | Launch date          | Remarks                                       |
|----------|----------------------|-----------------------------------------------|
| Viking   | August 20, 1975      | Mars encounter scheduled for<br>June 19, 1976 |
| Viking 2 | September 9,<br>1975 | Mars encounter scheduled for August 7, 1976   |

โครงการวอยเอเจอร์ ยานอวกาศในโครงการนี้มี 2 ลำ จุดประสงค์ของโครงการนี้ เพื่อสำรวจดาวเคราะห์รอบนอกของระบบสุริยะ หลังจากนั้นมันจะผ่านเลยหลุดออกนอกระบบ สุริยะ ยานวอยเอเจอร์ – 1 ออกเดินทางวันที่ 20 สิงหาคม ค.ศ. 1977 ส่วนยานวอยเอเจอร์ – 2 ออกเดินทางวันที่ 5 กันยายน ค.ศ. 1977

สำหรับการส่งมนุษย์ขึ้นไปในอวกาศนั้น สหรัฐอเมริกามีหลายโครงการ เช่น โครงการเมอร์คิวรี เป็นโครงการอวกาศที่มีมนุษย์ควบคุมเป็นโครงการแรกของสหรัฐ-อเมริกา โครงการนี้เริ่มในปี ค.ศ. 1961 จุดประสงค์เพื่อหาประสบการณ์ การพัฒนาความ สามารถของมนุษย์ในการดำรงชีพในอวกาศ และการนำยานอวกาศพร้อมมนุษย์อวกาศกลับ ลงมาสู่โลก ยานอวกาศทั้งหมดในโครงการนี้มี 9 ลำ แต่ส่งขึ้นไปในอวกาศเพียง 6 ลำ ยาน อวกาศลำแรกที่ขึ้นสู่อวกาศคือ ยานอวกาศเมอร์คิวรี – 3 พร้อมมนุษย์อวกาศกนแรกในโครง-การนี้คือ อลัน บี. เขปปาร์ด (Alan B. Shepard) โดยขึ้นสู่อวกาศที่ระดับความสูง 115 ไมล์ และอยู่ในอวกาศนาน 15 นาที จึงกลับลงมาสู่โลก รายละเอียดของโครงการนี้แสดงในตาราง ที่ 9.7

| Mission                                    | Launch date          | Results                                  |  |  |
|--------------------------------------------|----------------------|------------------------------------------|--|--|
| Mercury-<br>Redstone 3<br>(Freedom 7)      | May 5, 1961          | Alan Shepard made suborbital<br>flight   |  |  |
| Mercury-<br>Redstone 4<br>(Liberty Bell 7) | July 21, 1961        | Virgil Grissom made suborbital<br>flight |  |  |
| Mercury-<br>Atlas 6<br>(Friendship 7)      | February 20,<br>1962 | John Glenn made 3-orbit flight           |  |  |
| Mercury-<br>Atlas 7<br>(Aurora 7)          | May 24, 1962         | Scott Carpenter made 3-orbit<br>flight   |  |  |
| Mercury-<br>Atlas 8<br>(Sigma 7)           | October 3, 1962      | Walter Schirra made 6-orbit<br>flight    |  |  |
| Mercury-<br>Atlas 9<br>(Faith 7)           | May 15, 1963         | Gordon Cooper made 22-orbit<br>flight    |  |  |

โครงการเจมินี เป็นโครงการต่อเนื่องจากโครงการเมอร์คิวรี โครงการนี้มีจุดประสงค์ คือ 1. การนัดพบกับยานอวกาศลำอื่น ๆ ในอวกาศ 2. การเชื่อมต่อยานอวกาศสองลำเข้า ด้วยกันและทดสอบสมรรถภาพของมนุษย์ในการอยู่ในอวกาศเป็นระยะเวลานาน ๆ จากโครง-การนี้แสดงให้เห็นว่า มนุษย์สามารถอยู่ในอวกาศเป็นระยะเวลายาวนาน ซึ่งเพียงพอในการ ไป-กลับดวงจันทร์และประสบผลสำเร็จในการเชื่อมต่อยานอวกาศสองลำเข้าด้วยกัน โครงการ อวกาศชุดนี้มียานอวกาศทั้งสิ้น 12 ลำ เฉพาะยานอวกาศเจมินี – 1 และ 2 เป็นยานอวกาศ ที่ไม่มีมนุษย์ควบคุม นอกนั้นมีมนุษย์ขึ้นไปด้วยทุกลำ ดังในตารางที่ 9.8

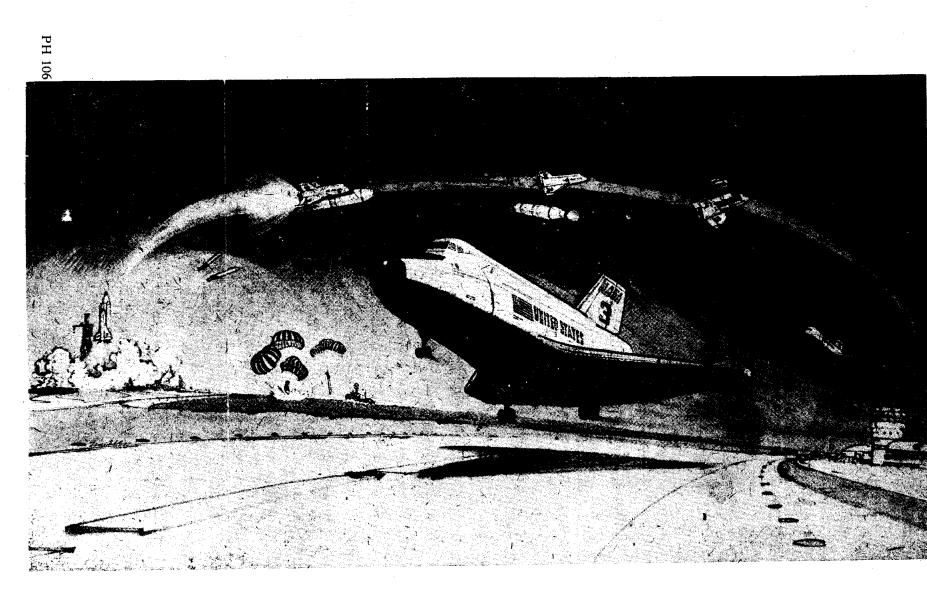
251

#### ตารางที่ 9.8 โครงการเจมินี

|          |                      |                                                                                                                                                                                                                                           | Gemini 9                                                                                            | June 3, 1966                                                                                                                                                  | Thomas P. Stafford and<br>Eugene A. Cernan; intended<br>docking with Agena target                                                                                                                                                                                                                                                                            |
|----------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mission  | Launch date          | Results                                                                                                                                                                                                                                   |                                                                                                     |                                                                                                                                                               | vehicle frustrated by a shroud<br>that failed to jettison. Cernan                                                                                                                                                                                                                                                                                            |
| Gemini 1 | April 8, 1964        | Unmanned orbital test flight                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                               | performed a total of 2 hours<br>7 minutes of EVA. 45 orbits                                                                                                                                                                                                                                                                                                  |
| Gemini 2 | January 19, 1965     | Unmanned suborbital flight to<br>test reentry heat shield                                                                                                                                                                                 | Gemini 10                                                                                           |                                                                                                                                                               | John W. Young and Michael<br>Collins rendezvoused and docked                                                                                                                                                                                                                                                                                                 |
| Gemini 3 | March 23, 1965       | Virgil I. Grissom and John W.<br>Young made 3 orbits of Earth.<br>First manned spacecraft to<br>change orbit                                                                                                                              | us<br>th<br>ap<br>D<br>th<br>us<br>be<br>C<br>C<br>m<br>th                                          | with Agena target vehicle, and<br>used its engine to boost<br>themselves into a new orbit of<br>apogee 476 miles (766 km).<br>Disengaged from first Agena and |                                                                                                                                                                                                                                                                                                                                                              |
| Gemini 4 | June 3, 1965         | James A. McDivitt and Edward<br>H. White; White became first<br>American to walk in space,<br>maneuvering with a hand-beld<br>jet gun for 21 minutes. 62 orbits                                                                           |                                                                                                     |                                                                                                                                                               | then docked with Agena vehicle<br>used in Gemini 8, which had<br>been parked in a new orbit.<br>Collins retrieved a<br>micrometeoroid detector from<br>the side of the Agena during a<br>30-minute EVA. 43 orbits                                                                                                                                            |
| Gemini 5 | August 21, 1965      | Leroy G. Cooper and Charles<br>Conrad made 8-day, 120-orbit<br>flight                                                                                                                                                                     | Gemini 11<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | September 12,<br>1966                                                                                                                                         | Charles Conrad and Richard F.<br>Gordon docked with Agena<br>target vehicle and used its<br>propulsion system to boost<br>themselves into a new orbit with<br>a record-breaking apogee of<br>850 miles (1,368 km). Gordon<br>attached a tether to the Agena<br>during a spacewalk; Gemini<br>undocked and kept station with<br>the tethered Agena. 44 orbits |
| Gemini 7 | December 4,<br>1965  | Frank Borman and James A.<br>Lovell made record-breaking<br>14-day, 206-orbit flight                                                                                                                                                      |                                                                                                     |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                              |
| Gemini 6 | December 15,<br>1965 | Walter M. Schirra and<br>Thomas P. Stafford made first<br>space rendezvous, maneuvering<br>with Gemini 7. 15 orbits                                                                                                                       |                                                                                                     |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                              |
| Gemini 8 | March 16, 1966       | Neil A. Armstrong and<br>David R. Scott made first space<br>docking, with an Agena target<br>vehicle. A stuck thruster caused<br>the spacecraft to roll<br>dangerously, and Gemini 8<br>undocked for an emergency<br>splashdown. 7 orbits |                                                                                                     | November 11,<br>1966                                                                                                                                          | James A. Lovell and Edwin E.<br>Aldrin docked with Agena<br>target vehicle. Aldrin performed<br>a total of 200 minutes of<br>stand-up EVA, photographing a<br>solar eclipse. On the third day<br>Aldrin worked for 129 minutes<br>on Agena. 59 orbits                                                                                                        |

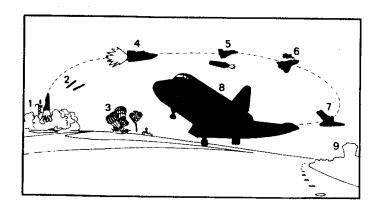
โครงการอะพอลโล เป็นโครงการอวกาศที่ต่อจากโครงการเจมินีในการส่งมนุษย์ขึ้นไป สำรวจพื้นผิวของควงจันทร์ ยานอวกาศอะพอลโล–11 เป็นยานอวกาศลำแรกที่นำมนุษย์ลง สำรวจบนพื้นผิวของดวงจันทร์ได้สำเร็จในบริเวณที่เรียกว่า ทะเลแห่งความสงบ เมื่อวันที่ 20 กรกฎาคม ค.ศ. 1969 มนุษย์อวกาศคนแรกที่เหยียบพื้นผิวดวงจันทร์คือ น**ีล อาร์มสตรอง** (Neil Armstrong) ยานอวกาศในโครงการนี้มีทั้งหมด 16 ลำ รายละเอียดในตารางที่ 9.9

#### ตารางที่ 9.9 โครงการอะพอลโล


| Mission                                                                         | Launch date                          | Results                                                                                                                                                       |                                                                               | May 18/<br>May 26, 1969              | Full dress rehearsal of Moon<br>landing, in lunar orbit; 21 days<br>spent orbiting Moon                     |
|---------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Apollo i                                                                        | February 26,<br>1966                 | Suborbital test launch with<br>Saturn 1B; CSM not sent into<br>orbit                                                                                          | Stafford<br>John W. Young<br>Eugene A.<br>Cernan                              |                                      |                                                                                                             |
| Apollo 2                                                                        | July 5, 1966                         | Orbital test of Saturn 1B; second<br>stage sent into orbit, but no<br>spacecraft carried                                                                      | Apollo 11                                                                     | July 16/<br>July 24, 1969            | Armstrong and Aldrin make<br>first manned lunar landing, on<br>July 20 in Sea of Tranquillity               |
| Apollo 3                                                                        | August 25, 1966                      | Suborbital test with Saturn 1B; CSM survived high-speed reentry                                                                                               | Armstrong<br>Michael Collins<br>Edwin E. Aldrin                               |                                      |                                                                                                             |
| Apollo 4                                                                        | November 9<br>1967                   | First launch of a Saturn 5<br>rocket, and first test of Apollo<br>CSM in orbit. The unmanned<br>command module was blasted<br>back into the atmosphere at the | Apollo 12                                                                     | November 14/<br>November 24,<br>1969 | Conrad and Bean land on<br>November 19 in Ocean of<br>Storms                                                |
|                                                                                 |                                      | same speed as reentry from the<br>Moon, to test its heat shield                                                                                               | Apollo 13<br>James A. Lovell                                                  | April 11/<br>April 17, 1970          | Landing attempt canceled after<br>explosion in oxygen tank<br>damages spacecraft                            |
| Apollo 5                                                                        | January 22, 1968                     | Unmanned test flight of the<br>lunar module on its own;<br>launched into Earth orbit by                                                                       | John L. Swigert<br>Fred W. Haise                                              |                                      |                                                                                                             |
|                                                                                 |                                      | Saturn 1B                                                                                                                                                     | Apollo 14<br>Alan B. Shepard                                                  | January 31/<br>February 9, 1971      | Shepard and Mitchell land on<br>February 5 in Frau Mauro                                                    |
| Apollo 6                                                                        | April 4, 1968                        | Second test flight of Saturn 5,<br>launching CSM into Earth orbit                                                                                             | Stuart A. Roos<br>Edgar D.<br>Mitchell                                        |                                      | region of Moon                                                                                              |
| Apollo 7<br>Walter M.<br>Schirra<br>Donn F. Eisele<br>R. Walter<br>Cunningham   | October 11/<br>October 22, 1968      | Earth-orbital test flight of<br>three-man CSM; launch by<br>Saturn 1B                                                                                         | Apollo 15<br>David R. Scott<br>Alfred M.<br>Worden<br>James B. Irwin          | July 26/<br>August 7, 1971           | Scott and Irwin land on July 30<br>at Hadley rill. First use of lunar<br>roving vehicle                     |
| Apollo 8<br>Frank Borman<br>James A. Lovell<br>William A.<br>Anders             | December 21/<br>December 27,<br>1968 | First manned Saturn 5 launch:<br>10 orbits of Moon in Apollo<br>CSM                                                                                           | Apollo 16<br>John W. Young<br>Thomas K.<br>Mattingly<br>Charles M. Duk        | April 16/<br>April 27, 1972<br>e     | Young and Duke land in<br>Descartes highlands on April 21                                                   |
| Apollo 9<br>James A.<br>McDivitt<br>David R. Scott<br>Russell L.<br>Schweickart | March 3/<br>March 13, 1969           | Earth orbital test of CSM and<br>lunar module; launched by<br>Saturn 5                                                                                        | Apollo 17<br>Eugene A.<br>Cernan<br>Ronald E. Evan.<br>Harrison H.<br>Schmitt | December 7/<br>December 19,<br>1972  | Cernan and Schmitt land on<br>December 11 at the edge of the<br>Sea of Serenity, near the crater<br>Littrow |

นอกจากนี้ยังมีโครงการหอวิจัยลอยฟ้า (sky lab), โครงการร่วมมือระหว่างสหรัฐ-อเมริกาและรัสเซียชื่อ โครงการอะพอลโล-โซยูส (apollo-soyuz) และโครงการขนส่งอวกาศ (space shuttle)

โครงการยานขนส่งอวกาศ โครงการอวกาศที่สร้างชื่อเสียงให้สหรัฐอเมริกาเป็นอย่าง มากในปัจจุบัน ได้แก่ โครงการขนส่งยานอวกาศ ยานอวกาศชนิดนี้เมื่อใช้แล้วสามารถนำ กลับมาใช้ใหม่ได้อีก ดังรูปที่ 9.7 ยานอวกาศชนิดนี้เป็นแบบกึ่งเครื่องบินกึ่งยานอวกาศที่สามารถ เดินทางขึ้นไปในอวกาศและกลับลงมายังพื้นโลกได้อีกไม่น้อยกว่า 100 เที่ยว โดยไม่ต้องเสีย กำใช้จ่ายมากมายเหมือนยานอวกาศในปัจจุบันซึ่งใช้เดินทางได้เพียงครั้งเดียว และการเตรียม ส่งยานออกสู่อวกาศแต่ละครั้งก็เสียเวลาน้อยลงกว่าแต่ก่อนมาก


ยานขนส่งอวกาศพุ่งขึ้นสู่อวกาศพร้อมด้วยนักบิน, ผู้ช่วยนักบิน และลูกเรืออีก 2 คน ในระยะแรกเป็นการส่งยานออกปฏิบัติการโคจรทางซีกโลกด้านตะวันตกและตะวันออกโดยมี ฐานบินอยู่ที่ศูนย์อวกาศเคนเนดี้ รัฐฟลอริดา ต่อมาเป็นการส่งยานอวกาศไปโคจรทางเหนือ และใต้โดยใช้ฐานทัพอากาศแวนเดนเบอร์ก แคลิฟอร์เนีย จรวดขับดันใช้เชื้อเพลิงแข็ง 2 เครื่อง เป็นพลังงานในการส่งยานขึ้นจากฐาน และกลับสู่พื้นน้ำบนโลกโดยมีร่มซูชีพช่วย เมื่อค้นพบ แล้วก็จะถูกน้ำกลับไปยังฐานส่งจรวดใหม่ เพื่อซ่อมแซมแก้ไขเอาไว้ใช้ในโอกาสต่อไป

 แล้วการะถูกน กาลบะบองงู้ นลงงั่ว งัดเคม เหอขอมแขมแก่ เบียาเรเบาเนเอก กลดอเบ ส่วนที่สำคัญของยานขนส่งอวกาศซึ่งเรียกว่า "ยานโคจร" จะยังคงโคจรต่อไป โดย ใช้เชื้อเพลิงที่เป็นของเหลวบรรจุอยู่ในถังขนาดใหญ่ติดไว้ที่ด้านนอกของยานอวกาศ เมื่อเข้าสู่ วงโคจรแล้ว ถังเชื้อเพลิงนี้จะแยกตัวออกและด้วยจรวดเล็ก ๆ ที่ติดอยู่ ถังนี้จะตกลงสู่พื้นมหา-สมุทรไกลออกไป ยานโคจรจะยังคงโคจรต่อไปอีกอย่างน้อยหนึ่งสัปดาห์ วัตถุที่ใช้หุ้มด้านนอก ของลำยานเป็นโลหะชนิดพิเศษป้องกันความร้อนภายในได้ ยานฯ นี้จะลงสู่พื้นโลกในแนวราบ อย่างเครื่องบนธรรมดาและจอดในบริเวณลานว่ง



รูปที่ 9.7 แสดงการขึ้นและลงของยานขนส่งอวกาศ

255



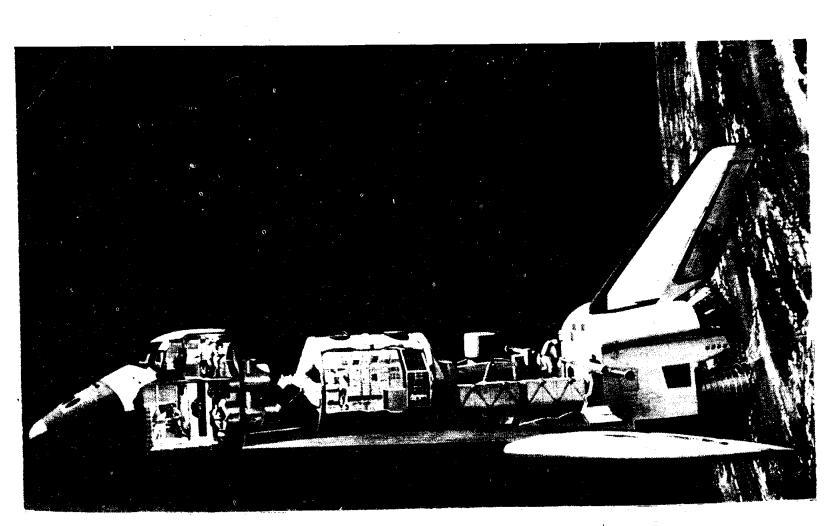
#### อธิบายรูปที่ 9.7

 ยานขนส่งอวกาศขึ้นจากฐานส่งโดยมีจรวดเชื้อเพลิงแข็ง 2 เครื่องเป็นตัวเสริมพลัง พายานขึ้นไปสูงประมาณ 40 กิโลเมตร

จรวดเสริมพลังถูกปลดแยกตัวโดยจรวดขนาดเล็ก เมื่อลงมาสู่ระดับสูง 19,000 ฟุต
จึงกางร่มชูชีพประคองตัวลงสู่พื้นมหาสมุทร ซึ่งจะมีเรือไปเก็บกลับมาทำความสะอาดซ่อมแซม
เพื่อบรรจุเชื้อเพลิงเตรียมส่งในครั้งต่อ ๆ ไป

 ส่วนสำคัญของยานขนส่งอวกาศเรียกว่า "ยานโคจร" ยังคงโคจรต่อไป โดยใช้เชื้อ-เพลิงเหลวจากแทงก์เชื้อเพลิงขนาดใหญ่ที่ติดอยู่ใต้ลำตัวยานอวกาศเป็นพลังขับดัน

เมื่อเข้าสู่วงโคจรแล้ว แทงก์เชื้อเพลิงนี้จะถูกปลดแยกตัวออกและตกลงสู่พื้นมหาสมุทร


6. ยานขนส่งอวกาศามารถโกจรปฏิบัติงานในอวกาศได้นานตั้งแต่ 1 สัปดาห์ จนถึง
1 เดือน ถ้าเตรียมสัมภาระและเชื้อเพลิงไปเพียงพอ

7. ตอนกลับคืนสู่พื้นโลก หลังจากเข้าสู่บรรยากาศแล้ว ยานอวกาศจะใช้ระบบควบคุม การทรงตัวแบบเครื่องบิน

8. แล่นลงจอดบนพื้นสนามบินใกล้บริเวณฐานส่งจรวด

เจ้าหน้าที่บนพื้นดินจะทำการซ่อมบำรุงให้ยานพร้อมที่จะใช้ขึ้นสู่อวกาศครั้งใหม่
กินเวลา 2 สัปดาห์





รูปที่ 9.8 ห้องปฏิบัติการอวกาศ (space lab) เป็นห้องทดลองค้นคว้าอเนกประสงค์ที่จะช่วยให้นักวิทยา-ศาสตร์ขึ้นไปปฏิบัติการทดลองในสภาวะไร้แรงดึงดูดในอวกาศ องค์การอวกาศยุโรป (ESA) กับองค์การนาซา (NASA) ออกแบบสร้างและนำไปบรรจุไว้ตรงกลางลำตัวของยานขนส่งอวกาศ ใกลับริเวณฐานส่งจรวด เจ้าหน้าที่บนพื้นดินจะทำการซ่อมบำรุงให้ยานฯ พร้อมที่จะ ใช้การใหม่กินเวลา 2 สัปดาห์ นักบินอวกาศและนักวิทยาศาสตร์ตรวจสอบการทำงานของ ดาวเทียมที่สลับซับซ้อนก่อนจะทำการปล่อยดาวเทียมที่นำขึ้นไปโดยการใช้ท่อนเหล็ก 2 ท่อน ซึ่งเปรียบเสมือนมือยกขึ้นออกจากช่องเก็บในยานขนส่งอวกาศ เมื่อตรวจสอบแล้วว่าดาวเทียมนี้ ทำงานได้ดี ก็จะปล่อยเข้าสู่วงโคจรรอบโลกต่อไป

โครงการอวกาศของรัสเซียที่ส่งไปสำรวจดวงจันทร์และดาวเคราะ มีทั้งที่มนุษย์ควบ-ดุมและมนุษย์ไม่ได้ควบคุม มีมากมายหลายโครงการ ในหัวข้อนี้จะกล่าวถึงโครงการที่น่าสนใจ บางโครงการเท่านั้น โครงการอวกาศที่ไม่มีมนุษย์ควบคุมมีทั้งหมด 4 โครงการ โครงการที่ ใช้สำรวจดวงจันทร์โดยเฉพาะมี 2 โครงการ คือ โครงการลูนา (luna) และโครงการซอนด์ (zond) อีกสองโครงการใช้สำรวจดาวเคราะห์ โดยโครงการมาร์ส (mars) สำรวจดาวอังคาร และโครงการวีเนอรา (venera) สำรวจดาวศุกร์

#### ตารางที่ 9.10 โครงการลูนา

| Probe   | Launch date           | Remarks                                                                                                 |
|---------|-----------------------|---------------------------------------------------------------------------------------------------------|
| Luna 1  | January 2, 1959       | Missed Moon by 3,728 miles<br>(6,000 km); in solar orbit                                                |
| Luna 2  | September 12,<br>1959 | Hit Moon September 13                                                                                   |
| Luna 3  | October 4, 1959       | Sent back first photographs of<br>lunar far side                                                        |
| Luna 4  | April 2, 1963         | Missed Moon by 5,282 miles<br>(8,500 km); possible soft-landing<br>failure                              |
| Luna S  | May 9, 1965           | Impacted Moon May 12;<br>failed soft-lander                                                             |
| Luna 6  | June 8, 1965          | Missed Moon by 100,000 miles<br>(160,000 km); failed soft-lander                                        |
| Luna 7  | October 4, 1965       | Impacted Moon October 7;<br>failed soft-lander                                                          |
| Luna 8  | December 3,<br>1965   | Impacted Moon December 6;<br>failed soft-lander                                                         |
| Luna 9  | January 31, 1966      | Soft-landed on Moon February<br>3, in western Oceanus<br>Procellarum. Returned photos<br>for three days |
| Luna 10 | March 31, 1966        | Entered lunar orbit April 3;<br>measured magnetic field,<br>meteoroids                                  |
| Luna 11 | August 24, 1966       | Entered lunar orbit August 28;<br>successor to Luna 10                                                  |

| Probe   | Launch date           | Remarks                                                                                                                                |
|---------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Luna 12 | October 22, 1966      | Entered lunar orbit October 25;<br>took photographs, made<br>measurements                                                              |
| Luna 13 | December 21.<br>1966  | Soft-landed on Moon December<br>24; returned photos, tested soil                                                                       |
| Luna 14 | April 7, 1968         | Entered lunar orbit April 10;<br>measured near-Moon conditions<br>such as magnetic and<br>gravitational field, solar wind<br>particles |
| Luna 15 | July 13, 1969         | Impacted Moon July 21 in Mare<br>Crisium; failed sample-return<br>attempt                                                              |
| Luna 16 | September 12,<br>1970 | Landed in Mare Fecunditatis<br>September 20; returned to Earth<br>September 24 with 0.2 lb. (100 g)<br>of Moon soil                    |
| Luna 17 | November 10,<br>1970  | Landed on Moon November 17,<br>carrying Lunokhod 1 automatic<br>Moon rover                                                             |
| Luna 18 | September 2,<br>1971  | Impacted Moon September 11;<br>probably failed landing attempt                                                                         |
| Luna 19 | September 28,<br>1971 | Entered lunar orbit October 3;<br>studied lunar surface and<br>near-lunar space                                                        |
| Luna 20 | February 14,<br>1972  | Landed near Mare Fecunditatis<br>February 21; small soil sample<br>returned on February 25                                             |
| Luna 21 | Januáry 8, 1973       | Landed in Mare Serenitatis on<br>January 15, carrying Lunokhod 2<br>lunar rover                                                        |
| Luna 22 | May 29, 1974          | Entered lunar orbit June 2;<br>studied Moon and near-lunar<br>space                                                                    |
| Luna 23 | October 28, 1974      | Landed on Moon November 6.<br>Damaged drill prevented sample<br>return                                                                 |

โครงการลูนา (luna spacecraft) เป็นชุดยานอวกาศสำรวจดวงจันทร์ของรัสเซีย เริ่มต้นโครงการนี้มีชื่อเรียกว่า ลูนิค (Lunik) ยานอวกาศลูนา – 1 พลาดจากเป้าหมาย (ดวง-จันทร์) แต่เป็นยานอวกาศลำแรกของโลกที่ออกจากโลกและเข้าสู่วงโคจรรอบดวงอาทิตย์ ลู-นา – 2 เป็นยานอวกาศลำแรกที่พุ่งชนดวงจันทร์ในเดือนกันยายน ค.ศ. 1959 ลูนา – 3 บินไป ด้านหลังของดวงจันทร์ (ด้านที่ไม่เคยหันเข้าหาโลก) และได้ส่งภาพกลับมาสู่โลก นับเป็นยาน อวกาศลำแรกที่ส่งภาพไกลที่สุด ลูนา – 9 เป็นยานอวกาศลำแรกที่ลงสู่พื้นผิวดวงจันทร์ ลูนา – 16 ลงสู่พื้นผิวดวงจันทร์และได้ตักดินบนดวงจันทร์กลับมาสู่โลก และลูนา – 17 ได้นำรถขึ้นไปวิ่ง บนดวงจันทร์ เรียกว่า ลูโนคอด (Lunokhod)

โกรงการซอนด์ โครงการนี้มียานอวกาศทั้งหมด 8 ลำ เป็นโครงการทดสอบการส่ง ยานอวกาศในอนาคต ยานอวกาศซอนด์ – 1 และ 2 ถูกส่งไปดาวศุกร์และดาวอังคารตามล่ำดับ แต่การติดต่อสื่อสารล้มเหลว นอกนั้นส่งไปสำรวจดวงจันทร์

ตารางที่ 9.11 โครงการซอนด์

| Probe  | Launch date           | Remarks                                                                                                                                                                                                                                     |
|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zond 1 | April 2, 1964         | Launched toward Venus;<br>communications failed                                                                                                                                                                                             |
| Zond 2 | November 30,<br>1964  | Launched toward Mars;<br>communications failed                                                                                                                                                                                              |
| Zond 3 | July 18, 1965         | Fiew behind Moon,<br>photographing area not covered<br>by Luna 3, Headed toward<br>Mars, retransmitting lunar<br>photographs in communications<br>test                                                                                      |
| Zond 4 | March 2, 1968         | Unsuccessful test of circumlunar<br>Soyuz                                                                                                                                                                                                   |
| Zond 5 | September 15,<br>1968 | First flight to vicinity of Moon<br>and back. Carried biological<br>specimens to assess radiation<br>hazard and tape recording to<br>test voice transmission between<br>capsule and Earth. Splashed<br>down in Indian Ocean<br>September 25 |
| Zond 6 | November 10,<br>1968  | Photographed lunar farside.<br>Skip-glide reentry using<br>aerodynamic lift; landed in<br>Soviet Union November 17                                                                                                                          |
| Zond 7 | August 8, 1969        | Repeat of Zond 6 mission.<br>Landed August 14                                                                                                                                                                                               |
| Zond 8 | October 20, 1970      | Similar to previous Zonds, with<br>modified reentry trajectory:<br>splashed down in Indian Ocean<br>October 27                                                                                                                              |

**โครงการวีเนอรา** เป็นโครงการอวกาศที่รัสเซียส่งไปสำรวจดาวศุกร์โดยเฉพาะ ยาน-อวกาศทั้งหมดมี 10 ลำ

# ตารางที่ 9.12 โครงการวีเนอรา

| <b>D</b> |                                                                                                                          | D                                                                                                       |               |                                                                                                                                |                                                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Probe    | Launch date                                                                                                              | Remarks                                                                                                 |               |                                                                                                                                |                                                                                                                                                    |
| Venus 1  | February 12,<br>1961                                                                                                     | Contact lost at 4.7 million miles<br>(7.5 million km). Bypassed planet<br>at 60,000 miles (100,000 km)  | Venus 7       | August 17, 1970                                                                                                                | Ejected capsule into Venus<br>atmosphere December 15, which<br>transmitted data from surface<br>for 23 minutes                                     |
| Venus 2  | November 12,                                                                                                             | Passed Venus at 15,000 miles                                                                            | <u> </u>      | NA 1 37 1070                                                                                                                   |                                                                                                                                                    |
|          | 1965                                                                                                                     | (24,000 km) on February 27,<br>1966, but failed to return data                                          | Venus 8       | March 27, 1972                                                                                                                 | Ejected capsule into Venus<br>atmosphere on July 22, which<br>soft-landed and returned data                                                        |
| Venus 3  | November 16,<br>1965                                                                                                     | Impacted Venus March 1, 1966,<br>but failed to return data                                              |               |                                                                                                                                | from the surface for 50 minutes                                                                                                                    |
|          |                                                                                                                          | but latieu to return data                                                                               | Venus 9       | June 8, 1975                                                                                                                   | Lander capsule descended on                                                                                                                        |
| Venus 4  | June 12, 1967                                                                                                            | Ejected capsule into Venus<br>atmosphere on October 18,<br>transmitted for 94 minutes<br>during descent |               |                                                                                                                                | October 22, returning panoramic<br>photograph and other data<br>from surface for 53 minutes.<br>Orbiter section continued in<br>orbit around Venus |
| Venus 5  | January 5, 1969 Ejected capsule into Venus<br>atmosphere on May 16,<br>transmitted data for 53 minutes<br>during descent | Ejected capsule into Venus                                                                              | <u>.</u>      |                                                                                                                                |                                                                                                                                                    |
|          |                                                                                                                          | Venus 10                                                                                                | June 14, 1975 | Lander capsule descended on<br>October 25, returning panoramic<br>photograph and other data for<br>65 minutes. Orbiter section |                                                                                                                                                    |
| Venus 6  | January 10, 1969                                                                                                         |                                                                                                         |               |                                                                                                                                | continued around Venus                                                                                                                             |
|          |                                                                                                                          | atmosphere on May 17, data<br>returned for 51 minutes during<br>descent                                 |               |                                                                                                                                |                                                                                                                                                    |

|          |                | for 23 minutes                                                                                                                                                                    |
|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Venus 8  | March 27, 1972 | Ejected capsule into Venus<br>atmosphere on July 22, which<br>soft-landed and returned data<br>from the surface for 50 minutes                                                    |
| Venus 9  | June 8, 1975   | Lander capsule descended on<br>October 22, returning panoramic<br>photograph and other data<br>from surface for 53 minutes.<br>Orbiter section continued in<br>orbit around Venus |
| Venus 10 | June 14, 1975  | Lander capsule descended on<br>October 25, returning panoramic<br>photograph and other data for<br>65 minutes. Orbiter section<br>continued around Venus                          |

โครงการสำรวจดาวอังการ (Mars probes) ยานชุดนี้มีทั้งหมด 7 ลำ มาร์ส – 2 และ 3 เป็นยานสองลำแรกในโครงการนี้ที่ประสบผลสำเร็จไปถึงดาวอังคาร

## ตารางที่ 9.13 โครงการมาร์ส

| Launch date         | Remarks                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------|
| November 1,<br>1962 | Radio contact lost after 66<br>million miles (106 million km)<br>on March 21, 1963                                     |
| May 19, 1971        | Entered Mars orbit November<br>27; surveyed surface and<br>atmosphere of planet. Lander<br>capsule ejected but crashed |
| May 28, 1971        | Entered Mars orbit December 2<br>and surveyed planet. Ejected<br>lander, but transmissions ceased<br>after 20 seconds  |
| July 21, 1973       | Passed Mars at a distance of<br>1,367 miles (2,200 km) on<br>February 10, 1974, due to<br>braking rocket failure       |
| July 25, 1973       | Entered Mars orbit February 12.<br>1974                                                                                |
| August 5, 1973      | Flew past Mars March 12, 1974,<br>and ejected lander capsule<br>which crashed                                          |
| August 9, 1973      | Flew past Mars March 9, 1974,<br>and ejected lander capsule<br>which missed planet                                     |
|                     | November 1,<br>1962<br>May 19, 1971<br>May 28, 1971<br>July 21, 1973<br>July 25, 1973<br>August 5, 1973                |

โครงการวอสตอก (Vostok), โครงการวอสคอด (Voskhod), โครงการโซยูส (Soyuz) และ โครงการซอลยูท (Salyut) เป็นโครงการอวกาศของรัสเซียที่มีมนุษย์ขึ้นไป กับยานอวกาศด้วย จุดประสงค์ใหญ่ที่รัสเซียส่งมนุษย์ขึ้นไปกับยานอวกาศ คือ เป็นการปฏิบัติ งานต่าง ๆ ในวงโคจรรอบโลก ส่วนของอเมริกาเป็นการส่งมนุษย์ไปสำรวจดวงจันทร์ แต่ใน ปัจจุบันนี้จุดประสงค์เหมือนกับรัสเซีย

# ตารางที่ 9.14 โครงการวอสตอค

| Mission  | Launch date     | Results                                                                                                             |
|----------|-----------------|---------------------------------------------------------------------------------------------------------------------|
| Vostok 1 | April 12, 1961  | First manned spaceflight;<br>Yuri Gagarin made one orbit<br>of Earth                                                |
| Vostok 2 | August 6, 1961  | Gherman Titov made day-long<br>flight                                                                               |
| Vostok 3 | August 11, 1962 | Andrian Nikolayev made 64<br>orbits, landing on August 15                                                           |
| Vostok 4 | August 12, 1962 | Pavel <b>Popovich</b> made 48 orbits<br>simultaneous with Vostok 3,<br>landing on August 15                         |
| Vostok 5 | June 14, 1963   | Valery Bykovsky made 81 orbits,<br>longest-ever individual flight,<br>landing on June 19                            |
| Vostok 6 | June 16, 1963   | Valentina Tereshkova became<br>first spacewoman, making 48<br>orbits simultaneous with<br>Vostok 5, landing June 19 |

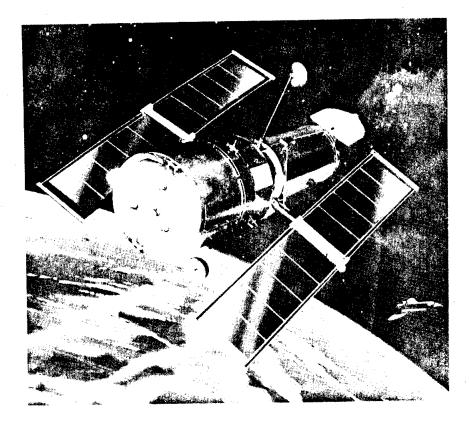
## **ตารางที่ 9.1**5 โครงการวอสุคอด

| Mission |   | Launch  | date     | Results                                                                                                                                                                                                                                                                                   |
|---------|---|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voskhod | I | October | 12, 1964 | Cosmonauta Vladimir Komarov,<br>Konstantin Feoktistov, and<br>Boris Yegorov made day-long.<br>16-orbit flight in 11,72X-lb<br>(5,320-kg) first multi-man caft                                                                                                                             |
| Voskhod | 2 | March   | 18, 1965 | Alexei Leonov made first space<br>walk from craft piloted by Pavel<br>Belyaev during day-long mission<br>Manual entry on 18th orbit after<br>automatic control system failed<br>on previous orbit brought<br>12,527-lb (5,682.kg) craft down<br>over 1,000 miles (1,600 km) off<br>course |

# ตารางที่ 9.16 โครงการโซยูส

| Mission                       | Launch date           | Results                                                                                                                                                                                                       |  |
|-------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Soyuz 1                       | April 23, 1967        | Vladimir Komarov killed during<br>reentry on April 24 after 18 orbits                                                                                                                                         |  |
| Soyuz 2                       | October 25, 1968      | Unmanned target for Soyuz 3                                                                                                                                                                                   |  |
| Soyuz 3                       | October 26, 1968      | Georgi Beregovoi maneuvered<br>close to Soyuz 2 but did not<br>dock with it                                                                                                                                   |  |
| Soyuz 4                       | January 14, 1969      | Vladimir Shatalov docked with                                                                                                                                                                                 |  |
| Soyuz 5                       | January 15, 1969      | Soyuz 5; Yevgeny Khrunov and<br>Alexei Yeliseyev transferred into<br>Soyuz 4 by a space walk, leaving<br>Boris Volnyov to return to<br>Earth alone in Soyuz 5                                                 |  |
| Soyuz 6                       | October 11, 1969      | Georgi Shonin and Valeri<br>Kubasov made joint maneuvers<br>with Soyuz 7 and 8, and<br>conducted welding experiments                                                                                          |  |
| Soyuz 7                       | October 12, 1969      | Anatoli Filipchenko, Vladislav<br>Volkov, and Viktor Gorbatko<br>carried out joint maneuvers<br>with Soyuz 6 and 8                                                                                            |  |
| Soyuz 8                       | October 13, 1969      | Vladimir Shatalov and Alexei<br>Yeliseyev commanded group<br>flight of Soyuz 6, 7, and 8; first<br>flight involving three craft,<br>seven cosmonauts                                                          |  |
| Soyuz 9                       | June 2, 1970          | Andrian Nikolayev and Vitaly<br>Sevastyanov made record<br>17½-day flight                                                                                                                                     |  |
| Soyuz 10 April 23, 1971       |                       | Vladimir Shatalov, Alexei<br>Yeliseyev, and Nikolai<br>Rukavishnikov docked with<br>space station Salyut 1 but did not<br>enter, possibly due to hatch<br>problem                                             |  |
| Soyuz 11                      | June 6, 1971          | Georgi Dobrovolsky, Viktor<br>Patsayev, and Vladislav Volkov<br>docked with Salyut 1 and<br>transferred for record 23 days;<br>crew members were killed during<br>reentry because of capsule<br>pressure loss |  |
| Soyuz 12                      | September 27,<br>1973 | Vasily Lazarev and Oleg<br>Makarov made two-day test<br>flight of simplified Soyuz for<br>space-station ferry missions                                                                                        |  |
| Soyuz 13 December 18,<br>1973 |                       | Pyotr Klimuk and Valentin<br>Lebedev made week-long<br>scientific flight                                                                                                                                      |  |
| Soyuz 14                      | July 3, 1974          | Pavel Popovich and Yuri<br>Artyukhin docked with Salyut 3<br>space station for 16-day mission                                                                                                                 |  |

| Mission  | Launch date          | Results                                                                                                                                                                                 |
|----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soyuz 15 | August 26, 1974      | Gennady Sarafanov and Lev<br>Demin failed in attempts to<br>rendezvous automatically and<br>dock with Salyut 3                                                                          |
| Soyuz 16 | December 2,<br>1974  | Anatoly Filipchenko and<br>Nikolai Rukavishnikov made<br>6-day rehearsal for Apollo-Soyuz<br>mission                                                                                    |
| Soyuz 17 | January 11, 1975     | Alexei Gubarev and Georgi<br>Grechko docked with Salyut 4<br>space station for 29-day mission                                                                                           |
| Soyuz    | April 5, 1975        | Vasily Lazarev and Oleg<br>Makarov failed to reach orbit<br>because launch rocket upper<br>stage failed to separate. Soyuz<br>capsule returned to Earth<br>safely, but was not numbered |
| Soyuz 18 | May 24, 1975         | Pyotr Klimuk and Vitaly<br>Sevastyanov completed 64-day<br>mission aboard Salyut 4 space<br>station                                                                                     |
| Soyuz 19 | July 15, 1975        | Alexei Leonov and Valeri<br>Kubasov performed joint<br>docking with American Apollo<br>in Apollo-Soyuz Test Project                                                                     |
| Soyuz 20 | November 17,<br>1975 | Unmanned test of automatic<br>shuttle craft; docked with<br>Salyut 4 on November 19 and<br>transferred fuel into space<br>station. Landed automatically<br>February 16, 1976            |


ł

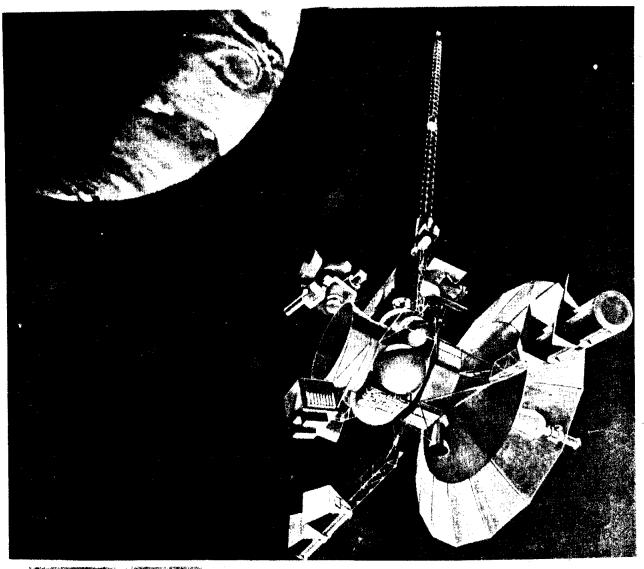
| Mission  | Launch date          | Results                                                                                                                                                                                                                                           |
|----------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salyut 1 | April 19, 1971       | Soyuz 10 crew docked on April<br>24 but did not enter, probably<br>because of hatch failure.<br>Soyuz 11 crew spent 23 days<br>aboard in June, but died due to<br>spacecraft pressure failure during<br>reentry. Salyut 1 reentered<br>October 11 |
| Salyut 2 | April 3, 1973        | Disintegrated in orbit;<br>reentered May 28                                                                                                                                                                                                       |
| Salyut 3 | June 24, 1974        | Soyuz 14 docked and<br>transferred crew for 14-day<br>mission. Rendezvous attempt by<br>Soyuz 15 failed. Salyut 3<br>reentered January 24, 1975                                                                                                   |
| Salyut 4 | December 26,<br>1974 | Soyuz 17 docked and transferred<br>crew for 29-day mission.<br>Subsequent Soyuz 18 crew<br>completed 63-day mission in<br>space station. Unmanned<br>Soyuz 20 docked automatically.                                                               |

#### 9.4 โครงการอวกาศในอนาคต

ตามปกติโครงการอวกาศในอนุาคตเราจะรู้เฉพาะของสหรัฐอเมริกาเท่านั้น ส่วนของ รัสเซียนั้นจะไม่ประกาศโครงการล่วงหน้าให้คนอื่น ๆ รู้ ดังนั้นในหัวข้อนี้จะพูดถึงโครงการ ของสหรัฐอเมริกาในการสำรวจอวกาศที่ได้ตั้งไว้ในปี ค.ศ. 1981 ในปัจจุบันนี้บางโครงการ ได้ทำสำเร็จเรียบร้อยแค้ว ในบางโครงการยังไม่สำเร็จ

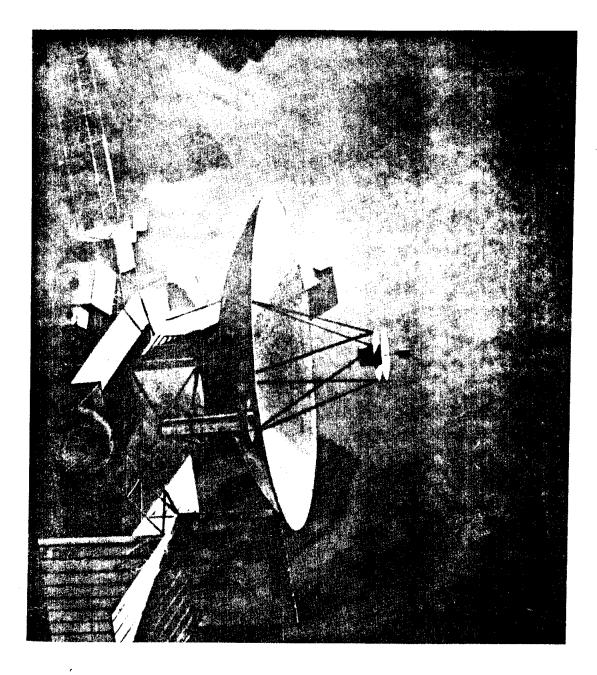
โครงการกล้องโทรทรรศน์อวกาศ (space telescope) ดาวฤกษ์ต่าง ๆ ที่เราเห็นมี แสงระยิบระยับนั้นเนื่องจากผลการเคลื่อนไหวของอากาศในบรรยากาศของโลก ซึ่งบรรยากาศ ของโลกมีผลอีกอย่างหนึ่งคือ ไปดูดกลืนแสงและรังสีที่มาจากดาวฤกษ์ต่าง ๆ เป็นอย่างมาก โดยเฉพาะเมฆ, หมอก, ควัน และแสงสะท้อนไฟฟ้าในตัวเมือง เป็นสิ่งที่รบกวนการศึกษา เทห์ฟากฟ้าในอวกาศเป็นอย่างมาก จากสิ่งต่าง ๆ เหล่านี้ทำให้กล้องโทรทรรศน์บนพื้นผิวโลก มีขีดจำกัดในการส่องดูเทห์ฟากฟ้าต่าง ๆ นักวิทยาศาสตร์จึงได้พยายามหาหนทางที่จะตั้งกล้อง โทรทรรศน์ในอวกาศซึ่งเป็นการเปิดประตูของเอกภพอีกขั้นหนึ่ง บัจจุบันนี้กล้องโทรทรรศน์ อวกาศได้ถูกส่งขึ้นไปโคจรรอบโลกเรียบร้อยแล้ว



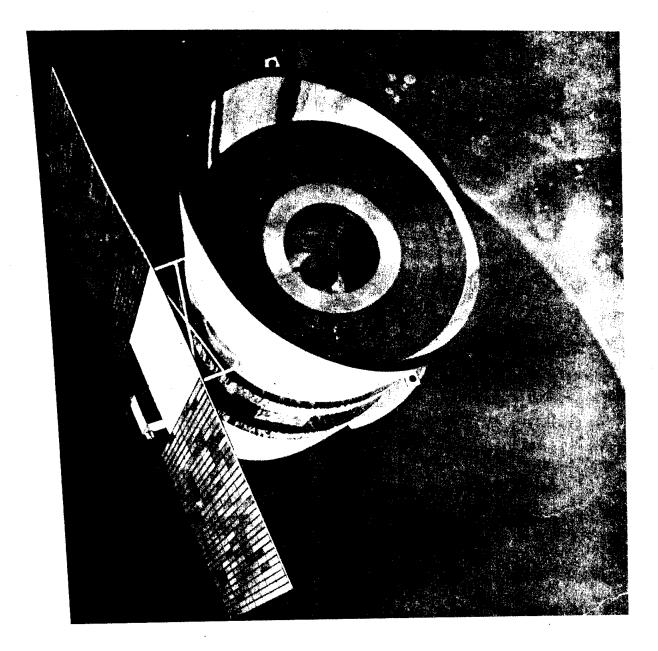

# รูปที่ 9.9 ภาพวาดแสดงกล้องโทรทรรศน์อวกาศ

กล้องโทรทรรศน์ขนาดใหญ่ที่สุดในโลกสามารถเห็นเทห์ฟากฟ้าที่มีระยะห่างไกล 2 พัน ล้านปีแสง แต่กล้องโทรทรรศน์อวกาศสามารถเห็นไกลกว่า 7 เท่า คือ สามารถเห็นวัตถุที่อยู่ ห่างออกไปถึง 14 พันล้านปีแสง กำลังการแยกภาพของกล้องโทรทรรศน์อวกาศสามารถแยก วัตถุที่อยู่ห่างกัน 0:05 ออกจากกันได้ และสามารถถ่ายภาพวัตถุที่มีความมัวมากกว่า 50 เท่า ที่เราสามารถเห็นได้ด้วยกล้องโทรทรรศน์บนพื้นผิวโลก

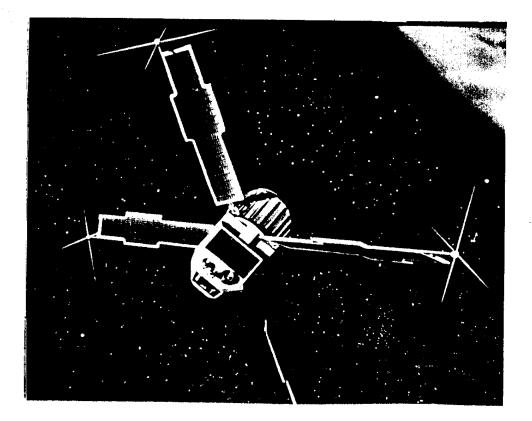
โครงการนี้มีเครื่องมือดังนี้ ตัวกล้องโทรทรรศน์อวกาศหนัก 12 ตัน ยาว 43 ฟุต เป็น กล้องโทรทรรศน์สะท้อนแสงแบบคัสซีเกรน กระจกสะท้อนแสงมีเส้นผ่านศูนย์กลาง 2.4 เมตร (94 นิ้ว) อยู่สูงจากพื้นผิวโลก 500 กิโลเมตร มีเครื่องมือวิทยาศาสตร์อื่น ๆ อีก คือ กล้อง ถ่ายรูป 2 กล้อง อุปกรณ์สเปกโทรกราฟ 2 กล้อง อุปกรณ์โฟโตมิเตอร์ (photometer) 1 กล้อง และอุปกรณ์ Support System Module 1 ชุด กล้องโทรทรรศน์อวกาศจะถูกควบคุมโดยนัก วิทยาศาสตร์ที่อยู่บนพื้นผิวโลกที่ Space Telescope Science Institute โครงการนี้เป็นโครงการ ร่วมหลายประเทศและหลายองค์การทางด้านอุตสาหกรรม โครงการยานอวกาศกาลิเลโอ ในการสำรวจดาวพฤหัส องค์การนาซา (NASA) ได้ ส่งยานอวกาศวอยเอเจอร์ – 1 และ 2 ไปสำรวจและได้ส่งข้อมูลกลับมาสู่โลกเรียบร้อยแล้ว องค์การนาซามีโครงการที่จะสำรวจดาวพฤหัส (เป็นดาวเคราะห์ที่ใหญ่ที่สุดในระบบสุริยะ) อย่างละเอียด ยานอวกาศในโครงการนี้มีชื่อเรียกว่า ยานอวกาศกาลิเลโอ ประกอบด้วยยาน อวกาศสองส่วน คือ ยานโคจร (planetary orbiter) (*รูปที่ 9.10 (ก)*) และยานสำรวจบรรยากาศ (atmospheric probe) (*รูปที่ 9.10 (ข)*) ยานอวกาศกาลิเลโอจะออกเดินทางไปสู่ดาวพฤหัสใน ปี ค.ศ. 1985 ภายหลังจากที่ยานเดินทางเป็นเวลา 30 เดือน ยานอวกาศกาลิเลโอก็จะเดินทาง ถึงดาวพฤหัส ยานสำรวจบรรยากาศก็จะแยกตัวลงสู่พื้นผิวของดาวพฤหัส ยานสำรวจบรรยากาศ กาศจะรายงานถึงแก๊ส, ของเหลวที่เป็นโครงสร้างของบรรยากาศของดาวพฤหัส ส่วนยานโคจร ก็จะทำหน้าที่เป็นดาวเทียมโคจรรอบดาวพฤหัส ยานอวกาศลำนี้จะรายงานปรากฏการณ์ต่าง ๆ ที่เกิดขึ้นบนดาวพฤหัสกลับสู่โลก


โครงการสำรวจขั้วของดวงอาทิตย์ โครงการนี้เป็นโครงการร่วมระหว่างองค์การ นาซา (NASA) กับองค์การอีซา (ESA : European Space Agency) โครงการนี้มีชื่อเรียกว่า International Solar Polar Mission (ชื่อย่อ ISPM) ยานอวกาศลำนี้ใช้เวลาเดินทางถึงดวง-อาทิตย์ประมาณ 3 ปี หลังจากที่ออกเดินทางจากโลก ยานอวกาศลำนี้จะไปสำรวจขั้วของดวง อาทิตย์ เพื่อศึกษาโคโรนาของดวงอาทิตย์ รังสี สนามแม่เหล็ก และลมสุริยะ

เนื่องจากบรรยากาศของโลกดูดกลืนรังสีอินฟราเรดที่มาจากเทห์ฟากฟ้าบนท้องฟ้า มาก ดังนั้นองค์การนาซาจึงมีโครงการที่จะส่งดาวเทียมสำรวจรังสีอินฟราเรดขึ้นสู่อวกาศใน ปี ค.ศ. 1982 ดาวเทียมดวงนี้มีชื่อเรียกว่า Infrared Astronomical Satellite (ชื่อย่อ IRAS) นักวิทยาศาสตร์สามารถศึกษาเทห์ฟากฟ้าที่เป็นแหล่งกำเนิดรังสีอินฟราเรดได้อย่างกว้างขวาง การศึกษาสามารถที่จะสำรวจระบบแรกของรังสีอินฟราเรดจากวัตถุที่อยู่ในทางช้างเผือก ทำ ให้สามารถศึกษาถึงดาวฤกษ์ที่กำลังดับและดาวฤกษ์ที่กำลังเกิดใหม่ และแผนที่ของแหล่งกำเนิด รังสีอินฟราเรดบนท้องฟ้าจะได้ทำขึ้นมาใหม่เพื่อใช้ในการศึกษาต่อไป ดาวเทียม IRAS จะ มีกล้องโทรทรรศน์วัดรังสีอินฟราเรดขนาดกว้าง 24 นิ้ว พร้อมทั้งเครื่องวัดรังสีที่มีความไวสูง ต่อรังสีอินฟราเรด โครงการนี้เป็นการร่วมมือกันระหว่างประเทศ 3 ประเทศ คือ สหรัฐอเมริกา (หน้าที่สร้างกล้องโทรทรรศน์และปล่อยดาวเทียมสู่อวกาศ), เนเธอร์แลนด์ (สร้างดาวเทียม) และอังกฤษ (เป็นศูนย์ปฏิบัติการควบคุมดาวเทียม)







รูปที่ 9.10 ภาพวาดแสดงยานอวกาศกาลิเลโอ ยานอวกาศลำนี้จะไปสำรวจดาวพฤหัส ประกอบด้วยยาน 2 ส่วน คือ ยานโคจร (ภาพบน) และยานสำรวจบรรยากาศ (ภาพล่าง)



รูปที่ 9.11 ยานสำรวจขั้วของดวงอาทิตย์ เป็นโครงการร่วมระหว่างองค์การอีซา (ESA) กับองค์การนาซา (NASA)



รูปที่ 9.12 ภาพวาดดาวเทียมสำรวจรังสีอินฟราเรดนอกโลก



รูปที่ 9.13 ดาวเทียมรังสีเอกซ์ถูกส่งขึ้นไปในอวกาศเมื่อเดือนธันวาคม ค.ศ. 1970 จากประเทศเคนยา เกือบ 200 แหล่งกำเนิดรังสีเอกซ์ในท้องฟ้าได้ถูกค้นพบในช่วงระยะ 4 ปีแรกของการปฏิบัติการ