กรมหลกล

สญญลักษณ์และอักษาย่อ

a	Specific maintenance rate	m_o	Osmolality or tonicity (a
	$(=mY_{EG})$		1 osmolal solution exerts an
a_{w}	Water activity		osmotic pressure of 22.4 atm at
atm	Atmospheres (pressure)		o°C)
ATP	Adenosine triphosphate	mm	Millimetres
cР	Centipoises (viscosity)	mmHg	Millimetres mercury (pressure)
D	Dilution rate $(=F/V)$	p	Product concentration
D_c	Critical dilution rate (when μ is at	P	Total amount of product in
•	maximum)		culture (Vp)
D'	Diffusion coefficient	P_{o}	Oxygen demand constant, moles
DNA	Deoxyribonucleic acid		oxygen consumed/mole of
DOC	Dissolved oxygen concentration		oxidizable substrate consumed
	(g/l)	pМ	$-\log m_e$ where m_e is the molarity
DOT	Dissolved oxygen tension	<u> </u>	of a metal ion
	(mmHg)	ppm	Parts per million
E_h	Oxidation-reduction or redox	q_p, q_s	Metabolic quotients, $I/x \cdot dp/dt$
	potential (Eqn 9.4)	377 20	and $1/x \cdot ds/dt$ respectively,
Eqn	Equation		abbreviated to q where indicated
$ar{F}$	Medium flow rate	RNA	Ribonucleic acid
H	Henry's constant (Eqn 9.2)	S	Substrate concentration
i	Ionic strength (Eqn 15.1)	S	Total amount of substrate in
Ka	Activator constant (Eqn 17.44)	5	culture (Vs)
K_i	Inhibitor constant defined in	Sr	Substrate concentration in
	Section 17.2.1		medium feed
$K_L a$	Gas-transfer coefficient	t	Time
	(Eqn 9.13); $a = \text{gas-liquid inter-}$	$\overset{\cdot}{T}$	Temperature
	facial area; $I/K_L = resistance$ to	t_d	Doubling time or mean genera-
	gas diffusion	• 4	tion time of biomass
K,	Saturation constant (Eqn 2.21)	<i>t</i> , .	Mean residence time or replace-
K_r	Colony radial growth rate	**	ment time of a continuous flow
L	Lag period before growth		culture $(=V/F)$
In	Logarithm to base e	ν	Culture volume
log	Logarithm to base 10	vol.	Volume
m	Maintenance coefficient		
	(Section 8.3.1), also molality	w/v	Weight per volume
	(moles solute/kg water)	w/w	Weight per weight
M	Molarity (moles/litre)	x	Biomass concentration

Y_{ATP}	Overall ATP yield (g dry bio-	$Y_{z/z}$	Growth yield $(-dx/ds)$,
	mass produced/mole ATP)	- 24	abbreviated to Y_x or Y where
Y_{ATP}^G	True ATP yield, that is excluding		indicated
	effect of maintenance energy	μ	Specific growth rate, $1/x \cdot dx/dt$
Ye	$Y_{x/x}$ where the substrate is the carbon (not energy) source	$\mu_{\mathbf{m}}$	Maximum specific growth rate defined by Eqn 2.21
	(Eqn 8.4)	μm	Microns
Y_E	Overall growth yield, $Y_{x/z}$ where	π	Osmotic pressure (atm)
	the substrate is the energy source	φ	Osmotic coefficient (Eqn 15.8)
Y_{EG}	True growth yield, Y_{xt} , where the	œ	Infinity
	substrate is the energy source and	œ	is proportional to
	m = 0	>	is greater than
$Y_{p/s}$	Product yield $(-dp/ds)$,	>>	is much greater than
	abbreviated to Y, where in-	<	is less than
	dicated	«	is much less than
$Y_{p/x}$	Product yield (dp/dx) ,	≈	approximately equals
	abbreviated to Y_p where indicated	~	(over a symbol) denotes steady- state value