ANS COBOL

A

reserved words

ACCEPT
ACCESS
ADD
ADVANCING
AFTER

ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND

ARE

AREA
AREAS
ASCENDING
ASSIGN

AT

AUTHOR
BEFORE
BLANK
BLOCK
BOTTOM

BY

CALL
CANCEL

CD

IT 253

CF

CH

CHARACTER
CHARACTERS
CLOCK-UNITS
CLOSE

COBOL

CODE

CODE-SET
COLLATING
COLUMN

COMMA
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE
CONFIGURATION
CONTAINS
CONTROL
CONTROLS

COPY

CORK
CORRESPONDING
COUNT
CURRENCY

DATA

DATE
DATE-COMPILED
DATE-WRITTEN
DAY

DE
DEBIJG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-I
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY

DIVIDE
DIVISION

293

DOWN
DUPLICATES
DYNAMIC
EGI

ELSE

EM1

ENARLE
END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP

EQUAL
ERROR ESI
EVERY
EXCEPTION
EXIT
EXTEND

FD

FILE
FILE-CONTROL
FILLER
FINAL

FIRST
FOOTING
FOR

FROM
GENERATE
GIVING

GO
GREATER
GROUP
HEADING
HIGH-VALUE
HIGH-VALUES
I-0
I-O-CONTROL

IDENTIFICATION

IF

IN

INDEX
INDEXED

294

INDICATE
INITIAL
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID

IS

JUST
JUSTIFIED
KEY

LABEL

LAST
LEADING
LEFT
LENGTH

LESS

LIMIT

LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES
MEMORY
MERGE
MESSAGE
MODE
MODULES
MOVE
MULTIPLE
MULTIPLY
NATIVE
NEGATIVE
NEXT

NO

NOT
NUMBER
NUMERIC
OBJECT-COMPUTER
OCCURS

OF

OFF
OMITTED
ON

OPEN
OPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOW
PAGE
PAGE-COUNTER
PERFORM
PF

PH

PIC

PICTURE
PLUS
POINTER
POSITION
POSITIVE
PRINTING
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
QUEUE
QUOTE
QUOTES
RANDOM
RD

READ
RECEIVE
RECORD
RECORDS
REDEFINES

IT 253

REEL
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE

RF

RH

RIGHT
ROUNDED
RUN

SAME

SD

SEARCH
SECTION
SECURITY
SEGMENT

SEGMENT-LIMIT

SELECT
SEND
SENTENCE
SEPARATE

IT:+ 253

SEQUENCE
SEQUENTIAL
SET

SIGN

SIZE

SORT
SORT-MERGO
SOURCE
SOURCE-COMPUTER
SPACE

SPACES
SPECIAL-NAMES
STANDARD
STANDARD-
START

STATUS

sToP

STRING
SUB-QUEUE-t
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT
SUM

SUPPRESS
SYMBOLIC
SYNC
SYNCHRONIZED
TABLE
TALLYING
TAPE
TERMINAL
TERMINATE
TEXT

THAN

THROUGH
THRU
TIME
TIMES

TO

TOP
TRAILING
TYPE
UNIT
UNSTRING
UNTIL

UP

UPON
USAGE
USE
USING
VALUE
VALUES
VARYING
WHEN
WITH
WORDS
WORKING-STORAGE
WRITE
ZERO
ZEROES
ZEROS

+4

*

*

A vV

295

lﬁ_iB.; |
Complete ANS COBOL language
formats

The following set of conventions is followed in the format statements:

| Words presented in uppercase are always reserved COBOL words

2 Uppercase words that are underlined are words that are required in the
type of program statement being described. Uppercase words that are
not underlined are optional and are used only to improve the readability
of the program.

3 Lowercase words are used to indicate the points at which data-names or
constants are to be supplied by the programmer. In addition to the words
“data-name” and “literal,” the term “identifier” is used to indicate a
data-name, but it has a slightly broader meaning. It refers to either of the
following cases: data-names that are unique in themselves, or data-
names that are not unique in themselves but are made unique through
qualification. Qualification is discussed in Chapter 8. Other lowercase

words used to indicate items to be ins&ted by the programmer are:
file-name
record-name
integer
formula
condition
statement
any imperative statement
any sentence

IT 253

297

298

4 Items enclosed in braces{) indicate that one of the enclosed items
must be used.

5 Iltems enclosed in brackets| | indicate that the items are optional, and
one of them may be used, at the discretion of the programmer.

6 An ellipsis () indicates that further information maybe included in the
program instruction, usually in the form of repeating the immediately
preceding element any desired number of times.

GENERAL FORMAT FOR IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

|AUTHOR. [comment-entry] ,
IINSTALLATION. [cemment-entryi.
|DATE-WRITTEN. [comment-entry|.
IDATE-COMPILED. jcomment-entry}. .

ISECURITY. |comment-entry].. |
/

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER, computer-name {WITH DEBUGGING MODE,.
OBIECT-COMPUTER. computer-name

S WORDS
MEMORY SIZE integer 1+ CHARACTERS

MODULES
|. PROGRAM COLLATING SEQUENCE IS alphabet-name]
l. SEGMENT-LIMIT I5 segment-number].
|SPECIAL-NAMES. |, implementor-name

- 1S mnemonic name |, ON STATUS IS condition-name-1
|. OFF STATUS [S condition-name-2||

1S mnemonic-name |, OFF STATUS IS condition-name-2
i. ON STATUS IS condition-name-|]

ON STATUS 18 condition-name-1 {, OFF STATUS IS condition-name-2}
OFF STATUS IS condition-name-2 [, ON STATUS 18 comdition-name-1} J

IT 253

B STANDARD: |]

NATIVE

. alphabet-name IS | implementor-name
FRORSRL tierat-2
literal-1 THRU
ALSO literal-3 [, ALSO literal-4] . . .
M‘ liceral-6]]
literal-5 THRU T

- ALSO literal-7 [, ALSO litcral-8]

[, CURRENCY SIGN IS literal-9)
[, DECIMAL-POINT IS COMMA|
[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{file-control-entry}

[I-O-CONTROL..

[: RERUN [ON 'z.f"e'“"m"] ‘]
= { implementor-name

REEL
}I—END OFl {uniT

EVERY ¢ [integer-l RECORDS
integer-2 CLOCK-UNITS
condilion-name

RECORD
: SAME | SORT AREA FOR file-name-3 {, file-name4} ...

; $ QF file-name-2

SORT-MERGE
{; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-31
|, file-name-6 {POSITION integer-4]}.. 1.. .]}

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT 1

SELECT [OPTIONAL)] file-name

ASSIGN TO implementor-name-1 [, implementor-name-2] . . .

. AREA
[, RESERVE integer-1 [AREAS]]

[; ORGANIZATION IS SEQUENTIAL]

IT 253 2909

, ACCESS MODE |'S SEQUENTI AL,
, + FILE STATUS IS data-name- 1)

FORMAT 2

SELECT file-name

ASSIGN TO implementor-name-1 |, implementor-name-2] . . .

. AREA
[, RESERVE integer-1 [AREAS]]

s ORGANIZATION IS RELATIVE
SEQUENTIAL [, RE} WIVE KEY 1S data-name-1]

; ACCESS MODE 1S

RANDOM .
,DYNAMIC% RELATIVE KEY 1S data-name-1

[; FILE STATUS IS da-name-2] -

FORMAT 3

SELECT file-name

ASSIGN TO implementor-name-1 [, implementor-name-2] . .

) . AREA]]
[, RESERVE integer-1 [AREAS

; ORGANIZATION | SINDEXED

SEQUENTIAL
. ACCESS MODE IS { RANDOM
DYNAMIC

- RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY 1S data-name-2 [WITH DUPLI CATES, ,
, » FILESTATUS IS data-name-3).

FORMAT 4

SELECT l‘il:-name_ASSlGN TO implementor-name-1 {, implementor-name-2|

300

IT 253

GENERAL FORMAT FOR DATA DIVISION

DATA DIVISION.
(FILE SECTION.
{FD file-name

. . RECORDS
I:, BLOCK CONTAINS [integer-1 TOJ] integer-2 { CHARACTERS }]

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]
. RECORD IS STANDARD
s LABEL { RECORDS ARE} {OMI'I‘TED }

[; VALUE OF implementor-name-1 IS ’ data-name-1 ‘

literal-1
: data-name-2]
[, implementor-name-2 1S literal-2 ‘] o
RECORD IS
[, DATA { RECORDS ARE } data-name-3 |, data-name-4) ..]
[;LINAGE IS if“"“'“”“""sf LINES ‘:.wm{ FOOTING AT qam-namc-et]
—_— integer-5 . el Tt integer-6
[, LINES AT TOP { d20-name-7 %] [LINES AT BoTTOM | data-name-8 H]
= {ineger-7 ——=— { intcger-8

{; CODE-SET IS alphabel-name]

. J REPORT IS report-) ot 2
' Y REPORTS ARE eport-name-1 [, report-name-2]. .. | .

{record-description-entry}.

[SD file-name

[s RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

 RECORD IS
[; DATA { RECORDS ARE } data-pame-1 [, data-name-2] . . :|

{record-description-entry} ...] ...

[WORKING-STORAGE SECTION.

[77-level-description-entry]]
record-descripnon-entry o

[LINKAGE SECTION.

77-level-description-entry]]
record-description-entry Y

IT 253 301

[COMMUNICATION SECTION.

[communication-description-enry

frecord-description-entry}... |...)
IREPORT SECTION.
[RD report-name
(; CODE literal-1}
[. { CONTROL IS } { data-name-1 {, data-name-2) .. }]
" } CONTROLS ARE FINAL [, data-name-1 {, data-name-2). .. |

_ LIMIT I§ , LINE] .
L_ PAGE LIMITS ARE integer-1 [LINES [, HEADING integer-2)

. FIRST DETAIL integer-31 [, LAST DETAIL integer-4)
(. FOOTING integer-5]].

{report-group-description-entry} |} |

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 1

level-number i data-name-| t

FILLER
; REDEFINES data-name-2]

PICTURE .
[: {E } IS charactcr-smng]

COMPUTATIONAL
CoMP

DISPLAY

INDEX

LEADING
TRAILING

integer-1 TO integer-2 TIMES DEPENDING ON data-name-3 f
integer-2 TIMES

|:{ ASCENDING_ } KEY IS data-name-4 {, dam-namc-S].l

; [USAGE 18]

[[SIGN I1S] { } [SEPARATE CHARACTER]]

[; OCCURS 3

DESCENDING

[INDEXED BY index-name-} {, index-name-2] . . .|

. { _SYNCHRONIZED | [LEFT
[SYNC RIGHT

302 IT 253

[{ epmen) o |

(: BLANK WHEN ZERO)

(s VALUE 1S literal|

FORMAT 2

THROUGH
66 data-name-1; RENAMES daw-name-2 [¢ Try™ - (data-name-3

FORMAT 3
- . J VALUE IS . THROUGH .
88 condition-name; { V__ALUES ARE} literal-1 I: { T——HRU } lucral-2:|

. THROUGH*{ .
[. literal-3 [{ﬁﬁj—'} Illcral-4]]

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION
ENTRY

FORMAT 1

€D cd-name:

[(1: SYMBOLIC QUEUE IS data-name-1]

(; SYMBOLIC SUB-QUEUE-, |§ data-name-2]
[SYMBOLIC SUB-QUEUE-2 IS data-name-3|

[SYMBOLIC SUB-QUEUE-3 IS data-name-4}

[MESSAGE DATE IS data-name-3)

I; MESSAGE TIME IS data-name-6|

[; SYMBOLIC SOURCE IS data-name-7)
{; TEXT LENGTH IS data-name-8]

FOR (INITIAL] INPUT

[; END KEY IS data-name-9]
[; STATUS KEY 1§ data-name-10)]
|: MESSAGE COUNT IS duta-name- ! |]]

{data-name-1, data-name-2,. data-name-1 §|

IT 253 303.

304

FORMAT 2

CD cd-name; FOR QUTPUT
I, DESTINATION COUNT IS data-name-1}
[; TEXT LENGTH IS data-name-2]
{; STATUS KEY IS data-name-3)
I, DESTINATION TABLE OCCURS integer-2 T{MES
[: INDEXED BY index-name-! {, indcx-name-zl.--]]
[; ERROR KEY 1S data-name-4)
[; SYMBOLIC DESTINATION IS data-name-5].

L]

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION
ENTRY

FORMAT 1

01" [data-name- ||

integer-l ION NEXT PAGE
: NUMBER IS .
[' LINE PLUS integer-2]

|— integer-3
+ NEXT GROUP IS} p ys integer-4

NEXT PAGE
, REPORT HEADING ‘

i PAGE HEADING ‘

’ CONTROL HEADING t ! data-name-2

FINAL
. DETAIL g
' TYPE IS DE
% QNTROL EQQTING t data-name-3 *
FINAL

PAGE FOOTING t

i RFPORT FOQTING

[-. |USAGE IS] D:f!m_u]

IT 253

IT 253

FORMAT 2

jevel-number f{data-name-1)

[- LINE NUMBER IS % integer-1 [ON NEXT PAGE) (]

PLUS integer-2
[; [USAGE IS, DISPLAY]

FORMAT 3

level-number {data-name-]

| s BLANK WHEN ZERO]

| : GROUP INDICATE])

[’ JUSTIFIED

JUST E RlGHT]

[; LINE NUMBER 1S i integer-1 [ON NEXT PAGE] t]

PLUS integer-2
[; COLUMN NUMBER IS integer-3)

_ { PICTURE
T tRc

; SOURCE IS identifier-1
; VALUE IS literal

E 1S character-siring

{ ; SUM identifier-2 |, identifier-3]..
|[UPON data-name-2 |, data-name-3].. |}.

data-name-4
[Reseron § o]

. i [USAGE IS,_DISRLAY].

GENERAL FORMAT FOR PROCEDURE DIVISION

FORMAT 1

PROCEDURE DIVISION |USING data-name-] [, data-name-2] . |
([DECLARRTIVES.

305

{section-name SECTION [segment-number|. declarative-sentence

[pamgraph-namc. |sentence]] 1
ﬂe DECLARATIVES.|

{section-name SECTION [segment-number].
[paragraph-namc. |sentence]] }

FORMAT 2

PROCEDURE DIVISION [USING data-name-| |, data-name-2] . .]

{paragraph-name. |sentence] . }

GENERAL FORMAT FOR VERBS

ACCEPT identifier [FROM maemonic-name)

DATE
ACCEPT identifier FROM ! DAY
TIME

ACCEPT ¢d-pame MESSAGE_COUNT

identifier-1 . idemiﬁer-Z] —
+ADD ’ literal- * [literal-2 ... TO identifier-m [ROUNDED)
{, identifier-n |ROUNDED|} I; ON SEE ERROR imperative-statement]
identifier-1 , identifier-2 [, identifier-3]
ARD 3 literal-| % ’ literal-2 E , literal-3

GIVING identifier-m _IROUNDED] |, identifier-n [ROUNDED]].

[; ON SIZE ERROR imperative-statement)

ADD (%M_q zidenliﬁcr lT(LC_}_ientiﬁer-Z [ROUNDED]

{; ON_SIZE ERROR imperative-staterent|

ALTER procedure-name-1 TO [PROCEED TO| procedure-name-2
{. procedure-name-3 TO {PROCEED TO, procedure-name-4],

identifier-1

literal-1 ‘ [USING data-name-1 [, data-name-2| . .. |

CALL i

306 IT 253

IT 253

[; ON OVERFLOW imperative-statement]

CANCEL %ldenuﬁ:r-l! [ldenuﬁer-Z] y
—_— literal-2

; REEL ‘ WITH NO REWIND
UNIT FOR REMOVAL
CLOSE file-name-|

WITH ‘ NO REWIND

§REEL‘ [WITH NO REWIND
UNIT FOR REMOVAL
. file-name-2

WITH i NO REWIND

CLOSE file-name-1 (WITH LOCK] [, file-name-2 [WITH LOCK]]. ..

COMPUTE identificr-1 [ROUNDED) {, identifier-2 [ROUNDED]] . . .
= anthmetic-expression [; ON SIZE ERROR imperative-staternent)

DELETE file-name RECORD [; INVALID KEY imperative-statement]

QUTPUT

DISABLE { INPUT [TERMINAL]
literal-1

} cd-name WITH KEY {‘f"“"r“"’}

. [UPON mnemonic-name]

identifier- 1 * i N idcnliﬁer-Z‘
literal-1

DISPLAY ’ i s literat-2

DIVIDE % u.icnufler-

1 . .
literal-1 i INTO identifier-2 [ROUNDED]

|. identifier-3 [ROLUNDEDY}] . .. [; ON SIZE ERROR imperative-statement|

{ INTO %u.icnuﬁer-Z
—— { literal-2

ideatifier- 1
literal-1

|+ identifier-4 [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

DIVIDE % % GIVING identifier-3 [ROUNDED]

identifier-1 identifier-2 L
pivipg § cemfeell gy 4 eenafe %GIVING identifier-3 (ROLNDED)

[. identifier-4 [RQUINDEDI} . .. [; ON SIZE ERROR imperative-statement)

identifier- identifier-2

DIVIDE ,
literal-2

1‘ INTO) ‘ GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

307

308

DIVIDE ;ldm“ﬁ" '% BY ildenuﬁcr-l

ral-1 literal-2 ‘ GIVING identifier-3 IROUNDED]

REMAINDER identifier-4 [; ON SIZE ERROR_imPenuve.sta[emm}

ENABLE i INPUT [TERMINAL]{ cd-name WITH KEY identifier-1 ‘

OUTPUT — { literai-1
ENTER language-name {routine-name].
EXIT [PROGRAM,.

GENERATE ’dau-mme %

report-name

GO 10 [procedure-name-| 1

GO TO procedure-name-1 {, procedure-name-2] . procedure “MC-"

DEPENDING ON dentifier

IF condition; { Statement-l , ELSE statement-2
' N-SENTENCE . ELSE NEXT SENTENCE

INITIATE report-name-] [, feport-name-2].

INSPECT identifier-1 TALLYING

ALL * identifier-3
. identifier-2 FOR ; LEADING‘> literal-1
CHARACTERS

({3 womas)] |

INSPECT identifier-1 REPLACING

} characres oy {if'°“'if‘°"6} [{ BEFORE } INITIAL { entificr-7 }]

| literal-4 AFTER lieral-s
S CII;ZDING 5 %m""ﬁﬂ- t ;ldcntiﬁer-s
) ‘ FIRST ' literal-3 == Yliteral-4

BEFORE identifier-7 L .
[{m } NITIAL {uwm-s }]} } %
INSPECT identifier-| TALLYING

LEADING literal-1

; wdentifier-2 FOR
CHARACTERS

, ALL ‘ , 1dentiﬁer—3t ‘

‘1T 253

I T 253

MERGE file-name-1 ON {

MULTIPLY {

muLTIPLY

[l e -

s () () (5]

literal-4 AFTER literal-5

identifier-5 identifier-6
LF.ADING i t BY ; ;
; FIRST) ; literal-3 = { litera)-4

BEFORE identifier-7
[{ BEFOR } INITIAL { et }] } & g
ASCENDING
DESCENDING

} KEY data-name-1 [, data-name-2] . . -

[ON {M } KEY data-name-3 [, data-name-dl...] .

DESCENDING
[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 {, file-name-4] . ..

QUTPUT PROCEDURE 1S scction-name-1 [{ -{%—Uﬂ} scction-namc—Z] l

GIVING file-name-5

identifier-1

. t TO identifier-2 [, identifier-3] . ..
literal —

MOVE ’

CORRESPONDING

wove { 088

} identifier-1 TO identifier-2

identifier-1

; % BY identifier-2 [ROUNDED]
literal-1 —_— ——————

[, identificr-3 (ROUNDED] | ... |: ON SIZE ERROR imperative-statement]

identifier-1 ‘ 3 identifier-2

literal-1 Viteral-2 t GIVING identifier-3 [ROUNDED]

[. identifier-4 (ROUNDED|] [; ON SIZE ERROR_ imperative:-statement)

—_— REVERSED
OPEN ; INPUT file-name-1 [WITH NO REW]ND_]

ilename.2 | REVERSED
+ IENAMES | WITH NO REWIND

0

QUTPUT fiie-ame-3 [WITH NO REWIND]
[filename4 [WITH_NO REWIND]]

IO _file-name-3 [, file-name-6].
EXTEND file-name-7 [, file-name-8]
INPUT file-name-1 [, file-name-2] . . .

OPEN { OUTPUT file-name-3 [, file-name-4] . . .
| 1-O file-name-5 |, file-name-6] . . .

PERFORM procedure-name-| [{

PERFORM procedure-name-1 [integer-1

UNTIL condition-1

proceduse-name-2

PERFORM procedure-name-1 [

d

m“u_mm_z] ldenufler- ‘ TIMES
]
]

PERFORM procedure-name-1 THROUGH procedure-name-2
—_— THRU
. . identifier-3
VARYING ’f‘“"“f“"?’ (» FROM ; index-name.2 s
- { index-name-|
literal-1
wdentifier-4

BY) literal3 % UNTIL condition-}

index-name-4
ljteral-3

identifier-
[AFTER mdex-nameSt FROM

identifier-6 %

, identificr-7
— {1

iteral-4 ‘ UNTIL condition-2

identifier-9 %

"AFTER fdenuﬁcr-ﬂ % FROM 1 index-name-6
‘ index-pame-5 y ——
literal-S

identifier-10 ..
BY ; literal-6 ‘ UNTIL condition-3]]
READ file-name RECORD [INTO identifier] [; AT END imperative-statement)

READ file-name [NEXT] RECORD {INTO identifier}
{; AT END imperative-statement]

READ file-name RECORD [INTO identifier] [; INVALLD KEY imperative-staiement)

310 IT 253

READ file-name RECORD [INTO identifier)
|: KEY IS data-name)
I INVALID KEY imperative statement}

MESSAGE

SEGMENT } INTO identifier- | {; NO DATA imperative-statement)

RECEIVE cd-name {

RELEASE record-name [FROM identifier]

RETURN file-name RECORD |INTO identifier] ; AT END imperative-statement
REWRITE record-name [FROM identifier|

REWRITE record-name {FROM identifier] |; INVALID KEY imperative-statement}

identifier-2

SEARCH identifier-1 | VARYING 3
e —_— index-name- 1

‘] |: AT END imperative-statement-1]
. imperative-statement-2 l

W -

» WHEN condition- | { NEXT SENTENCE J

imperalive-statemem-li}]

: WHEN.- condilion-
[WHEN. condition-2 { NEXT. SENTENCE

SEARCH ALL identifier-1 [; AT END imperative-statement-!]

IS EQUAL TO identifics-3
data-name- | S= literal-1
; WHEN - arithmetic-expression- |
condition-name- |
1S EQUAL TO \ @ennflcr-d
data-name-2 —_— - literal-2
AND 1S = ' . . .
—_— arithmetic-expression-2
L condition-name-2

imperative-statement.2
NEXT SENTENCE

SEND ¢d-name FROM identifier-I

WITH identifier-2

SEND cd-name [FROM identifier-1) :VV{'}‘-E ‘E‘E‘!]
— WITH EGI
\ { { idcnlificr-?o} [LINE] }
BEFORE integer LINES
{...___._.AWER } ADVANCING

mnemonic-name
PAGE

IT 253 311

312

SET index-name-4 {, index-name-5]. .. {

Lo N identifier-3
SET ; identifier-1 [, identifier-2) . . . ; TO 3 %

index-name-1 [, index-name-2) ... ;:::Icegxe-:alm-B

UPBY | f identifier-4
DOWN BY { integer-2

SOR.I:. | ASCENDING
ile-name- ON { DESCENDING } KEY date-name-1 |, data-name-2]..

on {ASCENDING_
DESCENDING

|COLLATING SEQUENCE IS alphabet-n&l

} KEY data-name-3 [, data-name-4} . 1

THROUGH {
THRU

INPUT PROCEDURE IS section-name-1 [{ section- named’]

USING file-name-2 |, file-name-3].

QUTPUT PROCEDURE IS section-name-3 [{%‘L“l:gi}'{'}section-namedl]

GIWINNG file-name-4

IS EQUAL TO
IS =

START file-name | KEY Ié SREﬂTHAN data-name
I§ NOT LESS THAN

18 NOT <

I: INVALID KEY imperative-statement)

STOP M
-_— literal

. . , . identifier-3
STRING u.jenllf;er—! . nlknuﬁer-Z .. DELIMITED BY 9 literal-3
literai-] , literal-2 ———————
SIZE
' . N identifier-6
identifier-4 [: ‘?""““ﬁ‘"5] ... DELIMITED BY J literal-6
literal-4 , literal-$ —— SIZE

INTO identifier-7 {WITH POINTER identifier-8]
[; ON OVERFLOW imperative-statement}

SUBTRACT ¢ ‘dentifier-1 «identifier2 1 gROM identifir-m [ROUNDED]
———— | literal-| , literal-2 —_— e
[. identifier-n iROUNDED]] ... [i ON SIZE ERROR imperative-statement|

T

253

I'T

literal-1 , literal-2 literal-m

SUBTRACT {idenliﬁcr~l} .identiftr-l] oM { ldcnuﬁcr-m}

GIVING identifier-n_[ROUNDED] {. identifier-o_[ROUNDED]]
[; ON SIZE ERROR imperative-statement)

CORRESPONDING
CORR

[; ON SIZE ERROR imperative-statement]

SUBTRACT { } identifier- | FROM identifier-2 [ROUNDED)

SUPPRESS PRINTING
TERMINATE report-name-1 {, report-name-2]

UNSTRING jdentifier-1

identificr- identifier-3
[DELIMITEDBY (ALL] {:‘l':r‘;‘]ff'z} [.(E[é_L_Ll {:i‘c’:lb';’ }]]

INTO identifier-4 |, DELIMITER IN identifier-5] [, COUNT IN identifier-6)
[. identifier.7 {, DELIMITER IN identifier-8] [, COUNT IN identifiero1]
|WITH POINTER identifier-10] ITALLYING IN identifier-1 1]

I; ON_OVERFLOW imperative-statement]

file-name-

INPUT
USE AFTER STANDARD m ROCEDUREON QUTPUT
— ERROR _— l_O_
EXTEND

file-name-1 |, file-name-2].

EXCEPTION | . INPUT
USE AFTER STANDARD { ERROR } PROCEDURE ON 4 5ypUT
— 1.0

USE BEFORE_ REPORTING identifier.

cd-name-I
JALL REFERENCES OF, identifier- |
USE FOR DEBUGGING ON file-“me-|
procedure-name-|
| ALL _PROCEDURES

¢d-name-2

(ALL REFERENCES OF, identifier-2
file-name-2

procedure-name-2

ALL _PROCEDURES

253

313

314

WRITE record-name [FROM identifier-1]

identifier-2 % [LINE

BEFORE , integer LINES
{ AFTER } ADVANCING mremonic e}
PAGE
[_ a7 JENDOFPAGEY . .
: EOP imperative-statemen

WRITE record-name |FROM identifierl |. INVALID KEY imperative-statement|

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION

IS [NOT| GREATER THAN

identifier-1 IS [NOT|_LESS THAN idsnrifk.2
literal- | IS [NOT] EQUAL TO literal-2
{ aﬁthmclic-exprcssion-l} IS |NOT)| > arithmetic-cxpression-2
index-name-1 IS {NOT| < index-dam-2
'S (NOT) =

CLASS CONDITION

identifier is [NQT) { %IC }

SIGN CONDITION

POSITIVE £

arithmetic-cxpression is [NOT) 3 NEGATIVE
ZERO

CONDITION-NAME CONDITION

condition-name

SWITCH-STATUS CONDITION

condition-nuns

IT 253

NEGATED SIMPLE CONDITION

NOT simpie-condition
COMBINED CONDITION
condition ’ { Bg—l) } condition £

ABBREVIATED COMBINED RELATION CONDITION

relation-condition

{ AND

OR } INOT) [relational-operator) object % .

MISCELLANEOUS FORMATS

QUALIFICATION

5 data-name-1
condition-name
F

OF .
text-name [; N hbrary-namc]

SUBSCRIPTING

% data-name (subscript-1 [, subscript-2 [, subscript-3]])

condition-name

INDEXING

data-name % (index-name-1 [{ =} literal-2)]
condition-name literal-1

[. il?:::lgamc&[{:}limm-‘l]‘ [“mr;amcli [{:}litenl-f.]%]]_)

IT 253 315

316

IDENTIFIER: FORMAT 1
data-name-1 [’-?FF‘ dam-name-Z] [(subs:ripx—l [. subscript-2

L subscripl—fi]])]

IDENTIFIER: FORMAT 2

data-name- | [;?_N_E% dau-name-z] (::::::l‘_';m'i[[i}ﬁteralal‘

[’indcx-namc-Z [{x} literal-4) ‘ [J :ndexl-rslame-3 [{=] Yiteral-6] ‘]])]
' literal-3 frexal

GENERAL FORMAT FOR COPY STATEMENT

COPY text-name [; %E iibrary-name]

' = =pseudo-text-1 == = =pseudo-text-2==
identifier-1 identifier-2
Y) ...
[REPLACTNG { ; literal-1 BY literal-2
word-1 word-2

IT 253

IBM AMERICAN NATIONAL S ANDARD
_CQBQL' GLOSSARY

IT 253

ACCESS: The manner in which files are referenced by the computer.
Access can be sequential (records are referred to one after ancther in
the order in which they appear on the file), or it can be random (the
individual records can be referred to in a nonsequential manner}.

Actual Decimal Poipt: The physical representation, using either of the
decimal point characters {. or ,), of the decimal point position in a
data item. When specified, it will appear in a printed report, and it
regquires an actual space in storage.

ACTUAL XEY: A key which can be directly used by the system to locate a
logical record on a mass storage device.

Blphabetic Character: & character which is one of the 26 characters of
the alphabet, or a space. 1In COBOL, the term does pnot include any other
characters.

bBlphanumeric Character: Any character in the computer's character set.

Alphanumeric Edited Character: A character within an alphanumeric
character string which ccntains at least one B or 0.

Arithmetic Expression: & statement containing any combination of data
names, numeric literals, and figurative constants, joined together by

one or more arithmetic operators in such a way that the statement as a
whole can be reduced to a single numeric value.

Arithmetic Operator: A symbol {(single character or two-character set)
which directs the system to perform an arithmetic operation. The
following list shows arithmetic operators:

Meaning Symbol
1tion +

ubt raction

Mil'tiplication *

Di vi sion /

Exponentiation ¥

Assumed Decimal Point: A decimal point position which does not involve

the existence of an actual character in a data item. It does not occupy
an actual space in storage, but is used by the compiler to align a value
properly for calculation.

BLOCK: In COBOL, a gqroup af characters or records which is treated as
an entity when moved into or put of the computer. The term is
synonymous with the term Physical Record.

Buffer: A portion of main storage into which data is read or from which
it is written.

Byte: A sequence of eight adjacent binary bits. When properly aligned,
two bytes form a halfword, four bytes a fullword, and eight bytes a
doubleword.

Channel: & device that directs the flow of information betweeén the
computer main storage and the input/output devices,

Character: O©One of a set of indivisible symbols that can be arranged in
seguences to express information. These symbols include the letters A
through %, the decimal digits 0 through 9, punctuation symbols, and any
other symbols which will be accepted by the data-processing system.

1BM American National Standard COBOL Glossary 385

317

318

Character Set -

Character Set: All the wvalid COBOL characters. The complete set of 51
characters is listed in "Language Considerations.™

Character String: A connected seguence of characters. &all COBCL
characters are valid.

Checkpoint: A reference point in a program at which information about
the contents of core storage can be recorded so that, if necessary, the
program can be restarted at an intermediate point.

Class Condition: A statement that the content of an item is wholly
alphabetic or wholly numeric., It may be true or false.

Clause: A set of consecutive COBOL words whose purpose is to specify an

attribute of an entry. There are three types of clauses: data,
environment, and file.

COBOL Character: BAny of the 51 wvalid characters (see CHARACTER) in the
COBOL character set. The complete set is listed in "Language
Considerations."

Collating Sequence: The arrangement of all valid characters in the
order of their relative precedence. The ccollating sequence of a
computer is part of the computer design -- each acceptable character has
a predetermined place in the sequence. A collating sequence is used
primarily in comparison ocperations,

COLUMN Clause: A COBCL clause used to identify a specific position
within a report line.

Ccomment: An annotation in the Identification Division or Procedure
Division of a COBOL source pregram. & comment is. ignored by the
compiler. As an IBM extension, comments may be included at any point in
a COBOL source program.

Compiie Time: The time during which a COBOL source program is
translated by the COBCL compiler into a machine language cbject program.

Compiler: A program which translates a program written in a higher
level language intc a machine language object program.

Compiler Directing Statement: A COBOL statement which causes the

compiler to take a specific action at compile time, rather thaa the
object program to take a particular action at execution time.

Compound Condition: A statement that tests two or more relational
expressions. It may be true or false.

Condition;:
* One of a set of specified values a data item can assume.

* A simple conditional expression: relation condition, class
condition, condition-name condition, sign condltlon switch-status
condition, NOT condition.

Conditional Statement: A statement which specifies that the truth value
of a condition is to be determined, and that the subsequent action of
the object program is dependent on this truth value.

Conditional Variable: A data item that can assume more than one value;
one or more of the values it agsumes has a condition-name assigned to
it.

Condition Name: The name assigned tc a specific value, set of values,
or range of values, that a data item may assume.

386 Supplementary Material

IT 253

Condition-name Condition

Condition-name Condition: A statement thnat the value of a conditional
variable is one of a set (or range) of values of a data item identified
by a condition-name. The statement may be true or false.

CONFIGURATION SECTION: A section of the Environment Division of the
COBOL program. It describes the overall specifications of computers.

Connective: A word or a punctuation character that dces one of the
following:

+ Associates a data-name ¢r paragraph-name with its qualifier
» Links two or more operands in a series

¢ Forms a conditional expression

CONSOLE: A COBCOL mnemonic-name associated with the console typewriter.

Contiguous_Items: Consecutive elementary or group items in the Data
Division that have a definite relationship with each other.

control Break: A recognition of a change in the contents of a control
data item that governs a hierarchy.

Control Bytes: Bytes associated with a physical record that serve to
identify the record and indicate its length, blocking factor, etc.

control Data Item: A data item that is tested each time a report line
is to be printed. If the value of the data item has changed, a control
break occurs and special actions are performed before the line is
printed.

CONTROL FOOTING: A report group that occurs at the end of the control
group of which it is a member.

control Group: An integral set of related data that is specifically
associated with a control data item .

CONTROL HEADING: A report greoup that occurs at the beginning ¢f the
control group of which it is a member.

Control Hierarchy: A designated order of specific control data items.
The highest level is the final control; the lowest level is the minor

control.

Core Storage: Storage within the central processing unit of the
computer, so called because this storage exists in the form of magnetic
cores.

Cylinder Index: A higher level index, always present in indexed data
organization. Its entries point to track indexes

Data Description Entry: An entry in the Data Division that is used to
describe the characteristics of a data item. It consists of a level
number, followed by an opticnal data-name, followed by data clauses that
fully describe the format the data will take. An elementary data
description entry (or item) cannot logically be subdivided further. A
group data description entry {(or item} is made up of a number of related
group and/or elementary items.

DATA DIVISION: One of the four main component parts of a COBOL program.
The Data Division describes the files to be used in the program and the
records contained within the files. It also describes any internal
Working-Storage records that will be needed (see “Data Division™ for
full details).

iIBM American National Standard COBOL Glossary 387

IT 253 3190

Data Zten

Leta item: & unit of recorded information thet can be identified by a
symbclic name or by & corbinpation of nares and subscripts. IZlementary
data items cannct logically oe subdivided. A qroup Sata item ls made up
of loaically related grouy and’/or elementary iteme and can he a logical
group within a record or can itsslf be a complete record. '

pata-name: & name assioned by the programmer to 2 data item in a CGROL
program. 1t must cdntain at least one alphabetic character.

DECLARATIVES: A set of cne or more compiler-directing sections written
at the bezinrinc of the Procadure Division cof a COBOL program. ihe .
first sectiun is preceded by the hezder DECLARATIVES. The last section
is followed by the neader END. DECLRKATIVES, There are three options:
1. Inputsoutpuat lekel handling

£ Inputsoutput eiro:-:heckinq procedures

3. Report Writing procedures

Each has its standard format (see "Procedure Division®™).

Device-number: The reference number assigned to any external device.

Digit: Any of the numerals from 0 through 9. In COBOL, the term is not
wged in reference tc any other synbol.
DIVISIGH: ©One of the four major portions of a CUBOL program:

¢ IDEWNTIFICATION LIVISION, which names the program.

¢+ DRYIRONMENT DIVISION, which indicates the machine eguipment and
egquipment features to be used in the program.

¢+ DATA DIVISION, which defines the nature and characteristics of data

" to be processed.
I

+ PROCEDURE DIVISION, which comsists of statements directing the
processing of data in a specified manner at execution time.

Division Header: The COBOL words that indicate the beginning of a
particviar division of a COBOL program. The four division readers are:
I-‘ JDENTIFICATIOR DIVISION,

¢ ERVIRONMENT DIVIEBION.

s DATA DIVISION.

« PROCEDURE DIVISION,

: The name of one pf the four divisions of a COBOL
Program. '

EBCDIG Cheractez: Any one of the symbols inciluded in the eight-bit

EBCDIC {(Extended Binary-Coded-Decimal Interchange Code) set., Al)l 51
COBGL characters are included.

Editing Character: A single character or a fixed two-character
comginatxon‘useﬁ to create proper formats f£or output reports {(see
"Language Considerations™ for a complete list of editing charactersy.

i

183 Supplementary Material

320 IT 253

Tlementary Ltam

slamentary Item: A data itesm that cannoct logicaily be subdivided.
Eatry: Any consecutive set of descriptive olauses terminated by a

period, written in the Identification, Envirenment, or Procedure
Divisions of a CCBCOL program.

Entry-name: A programmer-specified name that establishes an entry point
into a COBOL subprogram. .

-ENVIRONMENT DIVISIQON: One of the four main component parts of a TOBOL
program. Tne Environment Divisicn describes the computers upen which
the source program is compiled anrd those on which the object program is
executed, and provides a linkage between the logical concept of files
and their records, and the physical aspects of the devices on which
files are stored (see *Environment Division" for full Jdetails).

Execution Time: The time at which an object program actually performs
the instructions coded in the Procedure Division, using the actual data
provided.

Exponent: A number, indicating how many times another number (the base)
igs to be repeated as a factor. Positive exponents denote multiplica-
tion, negative exponents denote division, fractional exponents denote a
root of a guantity. In COBOL, exponentiation is indicated with the
symbol ** followed by the exponent.

F-mode Records: Records of a fixed length, each of which is wholly
contained within a block. Blocks may contain more than one record.

Figuratjve constant: A reserved word that represents a numeric value, a
character, or a string of repeated values or characters., The word can
be written in a COBOL program to represent the values or characters
without being defined in the Data bivision (see "Language Considera-
tions® for a complete list),

F;hE-COHTRDL: The name and Header of an Environment Division paragraph
n which the data files for a given source program are named and .
assigned to specific inputrsoutput devices.

File Description: An entry in the File Section of the Data Division
that provides information about the identification and physical

structure of a file,

File-name: A name assigned to a set of input data or output data. A
ile-name must include at least one alphabetic' character.

FILE SECTION: A section of the Data Division that contains descriptions
of all externally stored data (or files) used in a program. Such
information is given in one or more file description entries.

Floating-Point Literal: A numeric literal whose value is expressed in
floating-point notation -- that is, as a decimal number followed by an

exponent which indicates the actual placement of the decimal polnt.

Function-name: A name, supplied by IBM, that identifies system logical
unitg, printer and card punch control characters, and report codes.
When a function-name is associated with a mnemonic-name in the
Environment Division, the mnemonic-name can then be substituted in any
format in which substitution is valid.

gfoug Jtem: A data item made up of a series of logically related
elementary items. It can be part of a record or a complete record.

Beaded Label: A record that identifies the beginning of a physical file
or a volume.

IBM American National Standard COBOL Glcesary 389

IT 253 321

High-COrder
High-Order : The leftmost position in a string of characters.

IDENTIFICATION DIVISION: One of the four main component parts of a
COBOL program. The Identification Division identifies the source
program and the object program and, in addition, may include such
documentation as the author's name, the installation where written, date
written, etc. (see "Identification Division®™ for full details).

Identifier: A data-name, unique in itself, or made unique hy the
syntactically correct combination of qualifiers, subscripts, and/or
indexes.

Imperative-Statement: A statement consisting of an imperative verb and.
1ts Operanas, Which specifies that an action be taken, unconditicnally.
An imperative-statement may consist of a series of imperative-
statements.

Index: A computer storage position or register, the contents of which
identify a particular element in a table.

Index Data Jtem: A data item in which the contents of an index can be
stored without conversion to subscript form.

Index-name: A name, given by the programmer, for an index of a specific
table. An index-name must contain at least one alphabetic character.
It is one word (4 bytes) in length.

Indexed Data-name: A data-name identifier which is subscripted with one
or more index—-names.

INPUT-0OUTPUT SECTION: In the Environment Division, the section that
names the files and external media needed by an object program. It also
provides information required for the transmission and handling of data
during the execution of an object program. -

INPUT PROCEDURE: A set of statements that is executed each time a
Fecord is released to the sort file. Input procedures are optional;
whether they are used or not depends upon the logic of the program.

integer: A numeric data item or literal that does not include any
character positions to the right of the decimal point, actual or
assumed. Where the term "integer" appears in formats, "integer™ must
not be a numeric data item.

INVALID KEY Condition: & condition that may arise at execution time in
which the value of a specific key associated with a mass storage file
does not result in a correct reference to the file (see the READ,
REWRITE, START, and WRITE statements for the specific error conditions
involved).

I-C-CONTROL: The name, and the header, for an Environment Division
paragraph in which object program requirements for specifit input/putput
technigques are specified. These techniques include rerun checkpoints,
sharing of same areas by several data files, and multiple file storage
on a single tape device.

KEY: One or merg data items, the contents of which identify the type or
the location of a record, or the ordering of data.

: A reserved word whose employment is essential to the meaning
and structure of a COBOL statement. In this manuval, key words are

indicated in the formats of statements by underscoring. Key words are
included in the reserved word list.

390 sSupplementary Material

322 IT 253

Level Indicator

Level Indicator: Two alphabetic characters that identify a specific
type of file, or the highest position in a hierarchy. The level
indicators are: FD, SD, RD.

Level Number: A numeric character or two-character set that identifies
the properties of a data description entry. Level numbers 01 through 49
define group items, the highest level being identified as 01, and the
subordinate data items within the hierarchy being identified with level
numbers 02 through 49, Level numbers 66, 77, and 8% identify special
properties of a data description entry in the Data Division.

Library-name: The name of a member of a data set containing COBOL
entries, used with the COPY and BASIS statements.
LINKAGE SECTION: & section of the Data Division that describes data
made available from another program.
literal: A character string whose value is implicit in the characters
themselves. The numerie literal 7 expresses the value 7, and the
nonnumeric literal "CHARACTERS™ expresses the value CHARACTERS.
Logical Operator: A COBOL word that defines the logical connections
between relational operators. The three logical operators and their
meanings are:

OR (logical inclusive -- either or both)

AND (logical connective -~ both)

NOT (legical negation)

(See "Procedure Division™ for a more detailed explanation.)

Logical Record: The most inclusive data item, identified by a level-01
entry. It consists of one or more related data items.

Low-Order: The rightmost position in a string of characters.
Main Proaram: The highest level COBOL program involved in a step.
(Programs written in other languages that follow COBOL linkage

conventions are considered COBOL programs in this sense.)

Mantissa: The decimal part of a logarithm. Therefore, the part of a
floating-point number that is expressed as a decimal fraction.

Mass Storage: A storage medium -- disk, drum, or data cell -- in which
data can be collected and maintained in a sequential, direct, or indexed
orgahization.

Mass Storage File: A collection of records assigned to a mass storage
device.

Mass Storage File Seqment: A part of a mass storage file whose
beginning and end are defined by the FILE-LIMIT clause in the
Environment Division.

Master Index: The highest level index, which is optional, in the
indexed data organization.

Mnemonic-name: A programmer-supplied word associated with a specific
function-name in the Environment Division. It then may be written in
place of the function-name ir any format where such a substitution is
valid.

MODE: The manner in which records of a file are accessed or processed.

IBM American National Standard COBOL Glossary 391

IT 253 323

Name

Name: A word composed of not more than 30 characters, which defines a
COBOL operand (see "Language Considerations™ for a mors complete
discussion).

Noncontiguous Item: A data item in the Working-Storage Section of the
Data Division which bears no relationship with other data items.

' Nonnumeric Literal: A character string bounded by guotation marks,
which means literally itself. For example, "CHARACTER™ is the literal
for and means CHARACTER. The string of characters may include any
characters in the computer's set, with the exception of the guotation
mark. Characters that are not COBOL characters may be included.

Numeric . Character: A character that belongs to one of the set of digits
0 through 9.

Numeric Edited Character: & numeric character which is in such a form
that it may be used in a printed output. It may consist of external
decimal digits 0 through %, the decimal point, commas, the dollar sign,
etc., as the programmer wishes (see "Data Division" for a fuller
explanation).

Numeric Item: An item whose description restricts its contents to a
value represented by characters from the digits 0 throungh 9. The item
may also contain a leading oxr trailing operational sign represented
either as an overpunch or as a separate character.

Numerjc.Literal: A numeric character or string of characters whose
value is implicit in the characters themselves. Thus, 777 is the
literal as well as the wvalue of the number 777.

OBJECT-COMPUTER: The name of an Environment Divisjion paragraph in which
the computer upon which the object program will be run is described.

Object Program: The set of machine language instruetions that is the
output from the compilation of a COBOL source program. The actual
processing of data is done by the object program.

Object Time: The time during which an object program is executed.

Operand: The “object” of a verb or an operator. That is, the data or
equipment governed or directed by a verb or operator.

o] atjonal Sjgn: An algebraic sign associated with a numeric data
item, which indicates whether the item is positive or negative.

Optional Word: A reserved word included in a specific format only to
improve the readability of a COBOL statement. If the programmer wishes,
optional words may be omitted.

QUTPUT PROCEDURE: A set of programmer-defined statements that is
executed each time a sorted record is returned from the sort file.
Output procedures are optional; whether they are used or not depends
upon the logic of the program.

Overlay: The technique of repeatedly using the same areas of internal
storage during different stages in processing a problem.

PAGE: A physical separation of continuous data in a reporé. The
separation is based on internal requirements andsor the physical
characteristics of the reporting medium.

: A report group at the end of a report page which is
printed before a page control break is executed.

: A report group printed at the beginning of a report page,
after a page control break is executed.

392 sSupplementary Material

324 IT 253

Faragragi

1: A ser of cne or more CCBOL sentences, making up a logical
processing entity, and preceded by a paragraph-name or a paragraph

¢ A word followed by a period that identifies and
a3raphs in the Identitfication Division and Envircnment

A programper—-defined word that identifies and precedes

h wvariable that is given a specific value for a specific
g By e8s, Iin COBCL, parameters are most often used to pass
data values between calling and called programs.

% physzcal unit of data, synonymous with a block. It
3 of a portion of cne logical record, of one complete
record, or of a group of legical records.

L Sroaps An integral set of related data within a report.

riority-K: i A number, ranging in value from 0 to 9%, which
ssifie LoEe projrar séecktlions in the Procedure Division (see
cmentaticon® for more iaformation).

E JBEe: G
within the Pr
action Or sSerie

or more logically comnectesd paragraphs or sections
edure Division, which direct the computer to perform some
s i releted actions.

FROCEDURE DIVISION: ome of the four main component parts of a COBOL
program. The rrocedure Uivision contains instructions for solving a
problem. The Procedure Division may contain imperative-statements,
conditionsl statements, paragraphs, procedures, snd sections (see
"Frocedure Division™ for full details).

srogedure-name h word that precedes and identifies a procedure, used
by the programmer to transfer control from one point of the program to
another.

Process: Any operation or combination of operations on data.

Progran-name: A word in the Identification Division that identifies a
COBLL source program.

Functuation Character: A comma, semicolon, period, guotation mark, left
cr right parenthesis, or a Space.

Pualifier: & croup data-name that is used to reference a non-unigue
data-name at a lower level in the same hierarchy, or a section-name that
iz used to reference a non-unique paragraph. In this way, the data-name

or the paragraph-name can be made unigue,

Random Access: Amn access mode in which specific logical reccrds are
obtained from, or placed into, a mass storage file in a nonsegquential
manner . :

RECORD: B set of one or more related data items grouped for handling
either internally or by the inputs/output systems (see "Logical Record®).

Fecord Description: The total set of data description entries
associated with 2 particular logical record.

Becord-name: A data-name that identifies a legical record.

Eeel: A module of external storage associated with a tape device.

IEM American National Standard COBOL Glossary 393

[T 253 325

Relation Character

Relation Character: A character that expresses a relationship between
two operands. The following are COBOL relation characters:

Character Meaning
> Greater than
< Less than
= Equal to

Relation Condition: A statement that tne value of an arithmetic
expression or data item has a specific relationship t¢ another
arithmetic expression or data item. The statement may be true or false.

Relational Operator: A reserved word, or a group of reserved words, or
a group of reserved words and relation characters. A relational
operator plus programmer-defined operands make up a relational
expression., A complete listing is given in "Proc¢edure Division."

REPORT: A presentation of a set of processed data described in a Report
File. ’

eport_Description_Entry: Anp entrx iN the Report Section of the Da&a
vision thaf names and describes the formt of a report to be produced.

Report File: A collection of records, produced by the Report Writer,
that can be used to print a report in the desired format.

REPORT FOOTING: A report group that occurs, and is printed, only at the
end of a report.

Report Group: A set of related data that makes up a logical entity in a
report.

REPORT HEADING: A report group that occurs, and is printed, only at the
eginning of & report.

Report Line: One row of printed characters in a report.
Report-name: A data-name that identifies a report.

REPORT SECTION: A section of the Data bivision that contains one or
more Repert Description entries.

Reserved Word: A word used in a €0OBOL source program for syntactical
purposes. It must not appear in a program as a user-defined operand.

Routine: A set of statements in a program that causes the computer to
perform an operation or series of related operations.

Run Unit:; A set of one or more object programs that function, at object
time, as a unit to provide problem sclutions. This compiler considers a
run unit to be the highest lewvel calling program plus all called
Subprograms.

- co : Records that span physical blocks. Records may be

ixed or variable in length. Blocks may contain one or more segments.
A segment may contain one record or a portion of a record. Each segment
contains a segment-length field and a control field indicating whether
or not it is the first ands/or last or an intermediate segment of the
record. Each block contains a block-length field.

SECTION: A logically related sequence of one or more paragraphs. A
dection must always be named.

r: A combination of words that precedes and identifies
each section in the Environment, Data, and Procedure Divisions.

3% supplementary Material

s2086 IT 253

Section-name

Section-name: A word specified by the programmer that precedes and
identifies a secticn in the Procedure Division.

sentence: a sequence of one or nore statenents, the last ending With a
period followed by a space. J

Separator: An optional word or character that improves readability.

Sejuential Access: An access mode in which logical records are obtained
from, or placed into, a file in such a way that each successive access
to the £ile refers to the next subsequent logical record in the file.
The crder of the records is established by the programmer when creating
the file.

Sequential Processing: The processing of logical records in the order
in which records are accessed.

Sign Conditiop: & statement that the algebraic wvalue of a data item is
less than, erqual to, or greater than zero. It may be true or false.

Simple condition: An expressjion that can have two values, and causes
tne object program to select between alternate paths of control,
depending on the value found. The expression can be either true or

false.

Slack Bytes: Bytes inserted bhetween data items or records to ensure
correct alignment of some numeric items. Slack bytes contain no
meaningful data. In some cases, they ave inserted by the compiler: in
others, it is the responsibility of the programmer to insert them. The
SYNCHRONIZED clause instructs the compiler to insert slack bytes when
they are needed for proper alignment. Slack bytes between records axe
inserted by the programmer. ’

Sort File: & collection of records that is sorted by a SORT statement.
The sort file is created and used only while the sort function is
operative.

Sort File Description Entry: An entry in the File Section of the Data
Division that names and describes a collection of records that is used
in a SORT statement.

Sort-file-name: A data-name that identifies a Sort File.
Sort-key: The field within a record on which a file is sorted.
sort-work~file: & collection of records involved in the sorting

operation as this collection exists on intermediate device(s).

SOURCE~COMPUTER: The name of an Environment Division paragraph. In it,
the computer upon which the source program will be compiled is
described.

Source Program: A problem-solving program written in COBOL.

Special character: A character that is neither numeric nor alphabetic.
Special characters in COBOL include the space (), the period(.}, as
well as the following:

+ - x ;o= & . 0" Y |

SPECIAL-NAMES: The name of an Environment Division paragraph, and the
paragraph itself, in which names supplied by IBM are related to
mnemonic-names specified by the programmer. In addition, this paragraph
can be used to exchange the functions of the comma and the peried, or to
specify a substitution character for the currency sign, in the PICTURE
string.

IBM American Nationmal Standard COBOL Glossary 395

IT 253

327

Special Register

Special Register: Compiler-generated storage areas primarily used to
store information produced with the use of specific COBOL features. The
special registers are: TALLY, LINE-COUNTER, PAGE-COUNTER, CURRENT-DAIE,
TIME-OF-DAY, COM-REG, SORT-RETURN, SORT-FILE-SIZE, SORT-CORE-SIZE,
SORT-MODE-SIZE, and NSTD-REELS.

Standard Data Format: The concept of actual physical or logical recerd
size in storage. The length in the Standard Data Format is expressed in
the number of bytes a record occupies and not necessarily the number cof
characters, since some characters take up one full byte of storage and
others take up less.

Statement: A syntactically valid combination of words and symbols
written in the Procedure Division. A statement combines COBOL reserved
words and programmer-defined operands.

try: A data-name or reserved word that appears immediately
after a level indicator or level number in a Data Division entry. It
serves to reference the entry.

Subprogram: A COBOL program that is invoked by anotner COBCL program.
(Proegrams written in other languages that follow COBCL linkage conven-
tiona are COBOL programs in this sensge.)

¢ An integer or a variable whose value references a particular
element in a table.

Switch-status Condition: A statement that zn UPSI switch has been set
to an ON or OFF condition. The statement may be true or false.

SYSIPT: The system input device.

SYSLST: The system output device.

SY¥SPCH: The system punch device.

SYSPUNCH: An alternate name for the system punch device.

System-name: A name, specified by IBM, that identifies any particular
external device used with the computer,- and characteristics of files
contained within it.

Table: A coliection and arrangement of data in a fixed form for ready
reference. Such a collection follows some logical order, expressing

particular values (functions) corresponding to other values (arguments)
by which they are referenced.

Iable Elemenpt: A data item that belongs to the set of repeated items
comprising a table. '

Test Copdition: A sStatement that, taken as a whole, may be either true
or false, depending on the circumstances existing at the time the
expression is evaluated.

bel: A record that identifies the ending of a physical file
or of a volume.

= : Records of undefined length. They may be fixed or
variable in length; there is only one record per block.

r An arithmetic operator {+ or -} that can precede a
single variable, a literal, or a left parenthesis in an arithmetic
expression. The plus sign multiplies the value by +1; the minus sign
multiplies the value by -1.

UNIT: A module of external storage. Its dimensions are determined by
IBM.

396 Supplementary Material

328 IT 253

V=-mode Records

V-mode Records: Records of variable length, each of which is wholly
contained within a block. Blocks may contain more than one record.
Each record contains a record length field, and each block contains a
block length fielA.

Variable: A data item whose value may be changed during execution of
the obiject program.

Verb: A COBOL reserved word that expresses an action to be taken by a
COBCL compiler or an oObject program.

Volume: A module of external storage. For tape devices it is a reel;
for mass storage devices it is a unit.

Volume Switch Procedures: Standard procedures executed automatically
when the end of a unit or reel has been reached before end-ocf-file has
been reached.

Word:

1. In COBCL: A string of not more than 30 characters, chosen from the
following: the letters A through 2, the digits 0 through 9, and
the hypghen (-). The hyphen may not appear as either the first or
last character.

2. In Systems/360: A fullword is 4 bytes of storage; a doubleword is 8
bytes of storage; a halfword is 2 bytes of storage.

: Any particular storage position at which data must be
aligned for certain processing operations in Systems/360. The halfword
boundary must be divisible by 2, the fullword boundary must be divisible
by 4, the doubleword boundary must be divisible by 8.

WORKING-STORAGE SFCTTON: A section-name (and the section itself) in the
Data Division. The section describes records and noncontiguous data
items that are not part of external files, but are developed and
processed internally. It also defines data items whose values are
assigned in the source program.

IBM American National Standard COBOL Glossary 397

I T 253 329

