NIANUIN D

Assembler Directives

This appendlx describes the most important assembler directives. To explain
the syntax, we will use the following notation:

| separates choices
(] enclosed items are optiona
{1 repeat the enclosed items 0 oi more times

If syntax is not given, the directive has no required or optiond arguments.

ALPHA

Tells the assembler to arange segments in aphabetical order. Placed before
segment definitions.

ASSUME

Syntax: ASSUME segment_register:namet, segment_regis-
ter: namej

Teils the assembler In associate q segment yegister with & segment manwe.
Pxample: ASSUME cs:C_SEG, 0S:D_SEG, S$S:5_SEG, ES:D_SEG

Note: the name NOTHING cancels the current segment register association.
In particular, ASSUME NOTHING cancels segment register assoclations mede
by previous ASSUME datements.

.CODE
syntax: .CODE (name)
A sdmplified segment directive (MASM 5.0) for defining a code segment.

.COMM
syntax: ,COMM definition [,definiticon]

where definition has the syntax NEARIFAR label:size{:count)
label is a varisble name
§ze is BYTE, WORD, DWORD, QWORD, or TBYTE

count is the number of elements contained In the variable
(default = 1y

CT 215 533

Defines a communal variable; such a variable has both PUBLIC and EX1 RN
attributes, so it can be used in difterent assembly modulus.

Examples: COMM NEAR WORD1 : WOKD
CoMM FAR ARR1:BYTE:10, ARRZ2:BYTE:20

COMMENT

Syatax: COMMENT delimiter {text}
(lLext}
doelimiter [text}

where delimiter is the first nonblank character after the COMMENT directive.
Used to define a comment. Causes the assembler to ignore a1l text between
the lirst and second delimiters. Any text on the same ling a5 the second
delimiter i§ ignored as well.

Examples,

COMMEN 4 U oo ot e sk as Une debimit o - AL 1 iy
test 15 agnored 4

COWENT + This text and the following instruction is 1g
nored too + MV X, BX

.CONST

A simplified segmoent directive for defining a segment containing data that
will not he changed by the programn. Used mostly in assembly Izmguelge
routines 10 be called by a high-level language.

.CREF and . XCREF

Syntux: .CREF {nane [,name 1}
LXCREF {name [,name] }

In the generation of (he cross-reference ((CRIY file, (CREF directs the gener-
ation of cross-referencing of names in a program. .CREF with no arguments
causes cross-referencing of all names. ‘This js the default directive.

XCREF tums off cross-referencing in general, or just for the specificd names.

Exienple:

NCKLW sturns ol cross-eoferencing
CREF ;turns cross-referencing back on
XCRET NAMEL, NAME2 ;turns off cross-referencing

;of NAME1 and NAME2
.DATA and .DATA?

Simplitied segment directives tor deflining dala segments, DATA delines an
initialized data segment and .DATA? defines an uninitialized data segment,
Uninitialized data consist of variables defined with “?”, .DATA? is used mostly
with asscinbly [inguage routines to he called from a high-level language. For

stand-alone assembly language programs, the .[DATA segment may contain
uninitialized data.

534 CT 215

Data-Defining Directives

Directive Meaning

DB define byte

DD define doubleword (4 bytes)

DF define farword {6 bytes); used only with 80386 processor
DQ define quadword (8 bytes)

DT define tenbyte (10 bytes)

DW define word (2 bytes)

Symax: {name} directive initializer [,initializer]

where name is a variable name. If name is missing, memory is allocated but no
name is associated with it. initializer is a constant, constant expression, or ?,
Multiple values may be defined by using the DUP operator. See Chapter 10.

DQSSEG

leils the assembler to adopt the [0S segment-ordering convention. For a
SMALL model program, the ordcer is code, data, stack. This directive should
appear before any segruent definitions.

ELSE

Used in a conditional block. The syntax is
ondition
statementsl

FLSE

statemrnt of
ENDLE

i Conditicn is true, statementsl are assembiled; if Condition is false, state-
ments2 are assembled. See Chapler 13 for the form of Condition.

END
Syntax: UND | start-address)

knds a source program. Start-address is a name where execution is to begin
whoen the program is loaded. For j program with only one source module,
start-address would ordinarily be the name of the main procedure or a label
indicating the first instruction. For a program with several modules, each
module must have an END but only one of them can specify a start-address.

ENDIF

i.hds a conditional block. See Chapter 13.
ENDM
Lnds a macro or repeal block. see MACRO and REPT.

ENDP

tnds a procedure. See PROC,

ENDS

nds a segment or structure. See SEGMENT and STRUC

35

536

EQU

Syntax: There are two forms, numeric equates and string equates. A numeric
equate has the form

name EQU numeric-expression
A string equate has the form
name EQU <string>

The EQU directive assigns the expression following EQU to the constant
symbol naime. Numeric_expression must evaluate to a number. The assembler
replices cach occdrrence of name in @ program by pumeric_expression or
string. No memary is allocated for name. Name may not be redelined,

Examples:
MAX EQU 32767
MIN EQU MAX = 10
P EQU <'type & line Of text:is’>
ARG EQU <(BI + 2]>
Use in aprogram:
ATA
MSG pi PROWT
LA

M, NPROC
MOV AX,MIN ;equivalent to MOV AX, 32757
MOV B8X, ARG ;equivalent to MOV BX, [DI+Z)
= (equal)
Syntux: name = expression

where expression is aninteger, constant expression, or a 011¢ or two-character
string constant,

The directive = works like EQU, except that names defined with = can bc
redefined Jater in g program,

Examiples:
CTR 1
MOV AX,CTR ;translates to MOV Ax, 1
MO' RX, CIR ;jtranslates to MOV BX,0
‘The = direclive is often used in macros. See Chapter 13.

.ERR Directives

These are conditional error directives that can be used to force the
assembler to display an error message during assembly, for debugging pur-

poses. The assembler displays the message “Forced error”, with an identifying
number. See Chapter 13.

Directive Number Forced ermr if

.ERR1 a7 encountered during assembly pass !
ERR2 88 encountered during assembly pass 2
ERR a9 encountered

.ERRE expression 90 expression is false (0)

CT 215

ERRNZ expression 91 expression is true (nonzero)

ERRNDEF name 92 name has not been defined.
ERRDEF name 93 name has been defined.
ERRB <argument:» 94 argument is blank

ERANB <argument> 95 argument is not blank
.LRRIDN <argi> <arg2> 96 argl and ara? are identical
ERRDIF <ary | » <argl> 97 argl and arg2 are dilferent
EVEN

Advances the location counter to the next even address.
EXITM

Used in a macro or repeat block. Tells the assembler to terminate the macro
or repeat block expansion.

EXTRN
Syntax: EXTRN name:type [,name:type]

Infornts the assembler of an external name; that is, a name defined in another
module. Type must match the type declared for the name in the other mod-
ule. Type can be NEAR, FAR, PROC, BYTLE, WORD, DWORD, FWORD,
QWORD, TBYTE, or ABS. See Chapter 14.

JARADATA and .FARDATA?

Syntax: .FARDATA {name}
LJARDATA? {(name)

Used primarily with compilers for defining extra data segments.

GROUP
Syntax: name GROUP segment [, segment)

A group is a cotlection of segments that are associated with the same starting
address. Variables and laboels defined in the segments of the group gte as-
signed addresses relative to the start of the group, rather than relative 1o the
beginning of the segments in which they arc defined. ‘This makes it possible

to refer to all the data in the group by initlalizing a single segment register.

Nofe: the same result can be obtained by giving the same name and a PUBLIC
attribute to all the segments.

IF directives

These directives arc used to grant the assembler permission to assemble the
statements following the directives, depending on conditions. A list may he
found in Chapter 13

INCLUDE
Syntux: INCLUDE filespec

wherr filespec specifies a file containing valid assembly language statements.
In addition to a file name, filespec may Include a drive and path.

The directlve causes the assembler 10 Insert the contents of the file ot the
position of the INCLUDL i1 the source file, and to begin processing the file’s
statements.

3

538

Exanples: | NCLUDE MACLIB !
INCLUNE C:\BIN\PROG1,ASM

LABEL
Symtax; nane LABEL type

where type is BYTE, WORD, DWORD, FWORD, QWORD, TBYTE, or the
name of a previously-defined structure.

This directive provides a way to define or redeflne the type associated with
a name,

Example:
WORD- ARR LABEL WORD
BYTE ARR bE 100 DUP (0}

Here WORD_ARR defines a SO-word array, and BYTE._ARR defines a 100-byte
array. The same address is assigned to both variables.

LALL

Causes the assembler to list all statements in a macro expansion, except
those preceded by a double semicolon.

LIST and .XLIST

.LIST causes the assembler to include the statements following the \LIST

directive in the source program listing. .XLIST causes the listing of the state-
ments following the .XLIST directive to be suppressed.

LOCAL
Syntax: LOCAL name [, name]

Used inside a macro. Tach time the assembler encounters a LOCAL name
during macro expansion, it replaces it by a uniqgue name of form ?7number.
In this way duplicate names are avoided if the macro js called several timus
in a program. See Chapter 13.

MACRO and ENDM

Syntax: name MACRO [paraneter [,parameter]))
These directives are used to define a macro,
Example;
EXCHANGE MACRO WORD1, WORD2
PUSH WORD1
PUSH WORD2
POP WORDL
POP CORD2
ENDM
See Chapter 13,
MODEL
Syntux: . MCDEL memory model

A simplified segment directive for defining a memory model. Memory model
cin be any of the following;

CT215

CT 215

Mode/ Description

TINY code and data in one segment

SMALL code in one segment
data in one segment

MEDIUM code in more than one segment
data in one segment

COMPACT code in one segment
data in more than one segment

LARGE code in more than one segment
data in more than one segment
no array larger than 64 KB

HUGE code In more than one segment
data in more than one segment
arrays may be larger than 64 KB

ORG
Syntax: ORG expression

where expression must resolve to a 2-byte number.

Sets the location counter to the value of expression. Yor example, ina .COM
program, the directive ORG 100h sets the location counter to 100h, so that
vaidles will be assigned addresses rdative to the dat of the program, raher
than in the 100h-byte program segment prefix, which precedes the program
in menory. Another use of ORGis to define a data areathat canbe shared
by several variables. For example,

.DATA

woRD! _ARR DW 100 CQUP (7)

ORG 0

WORD2_ARR DW 50 DUP (?)

WORD3 ARR DW 50 DUP (?)

This definition causes WORD2_ARR and the first 50 words in WORD1_ARR
to occupy the same memory space. Similarly, WORD3_ARR and | he last 50
words of WORD1_ARR occupy the same space.

%OUT

synt ax: $0UT text

where text isaline of ASCII characters.

Used to display a message at a specified place in an assembly listing. Often
used during conditiotsal assembly.

Example:
| FNDEF SUM

SUM DM ?

$OUT SUM i s defined here
ENDIF

If SUM had not been previously defined, it would be defined here and the
message would be displayed.

539

540

PAGE
Syntax: PAGE {{length},width}

where length is 10-255 and width is 60-132, Default values are length = 50
and width = 80.

Used to create a page break or to specify the maximum number of lines per
page and the maximum number of characters per line in a program listing.

Exaniples:

PAGE ;creates a page break

PAGE 50.70 s8ats maxi num page length to 50
jand nmaxi num page width to 70

PAGE 132

ssets maxi mum page width to 132

PROC and ENDP

Syntax; name PROC distance
name ENDP

where digance is NEAR or FAR. Default is NEAR,
Used to begin and end a procedure definition. See Chapter 8.

Processor and Coprocessor Directives

The following directives define the instruction set recognized by
MASM. These directives must be placed outside segment declarations. In the
following, 8086 includes 8088, 8087, 80287, and 80387 are cOprocessors.

Directive Enables assembly of instructions for processors
end coprocessors
8086 8086, 8087
186 8086, 8087, and 80186 additional ingtructions
286 8086, 80237, and additiond 80286 nonprivileged ingtructions
286P same as 286 plus 80286 priviteged instructions
386 8086, 80387 and 80286 and 80386 nonprivileged ingructions
.386P same & 386 plus 80386 privileged indtructions
8087 8087; disables indructions unique to the 80287 and 80387
287 8087, and 80287 additional instructions
.387 8087, 80287, and 80387 additiond ingtructions
PUBLIC
Syntax; PUBLI C nane [, name)

where name is a variable, label, or numeric equate defined in the module
containing the directive.

Used to make names in this module available for use in other modules. Not
to be confused with the PUBLIC combine-type, which is used to combine
segments. See Chapter 14.

PURGE

Syntax: PURGE macronameg [,macroname]

where macroname is the name of a macro,

CT215

CT215

Used to delete macros from memory during assembly. This might be neces-
sary if the system does not have enough memory to keep all the macros a
program needs in memory at the same time.

Example:

MAC1

sexpand macro MACL
PURGE MAC1

;don't need it anymore

RADIX
syntax: .RADIX base

where base is a decimal number in the range 2-16.

Specifies the default radix for representation of integer congtants. ThIS micans
Ihat In the absence of a“b”, “d”, or "h” as the last character In the repre-
sentation of an Integer, the assembler wiil assume the number Is represented
In the base specified by the directive. The default is 10 (decimal).

Examples.

. DATA

JRADIX 16 ;hexadecimal

A DW 1101 y interpreted as 1101h
LRADIX 2

B DW 1101 ;interpreted a s 1101b
RECORD

Used to define a record variable. This Is a byte or word variable In which

secific blt fields can be accessed symbolicdly. See the Microsoft Macro As
sembler Programmer’s Guide.

REPT and ENDM

syntax: REPT expression
statements
ENDM

where expression must evaluate to a 16-bit unsigned number.
Defines a repeat block. REPT causes the daements in the block to be assem-
bled the number of times equal to the value of expression. A repeat block

can be placed at the position where the statements are to be repeated, or it
can be put inside a macro. See Chapter 13.

SALL
Causes the assembl er to suppress thelisting of macro expansions.

SEGMENT end ENDS

Syntax: name SEGMENT (align) {combine} {‘class‘}
statements
name ENDS
where align is PARA, BYTE, WORD, or PAGE

combine is PURLIC, COMMON, STACK, or AT
classisaname enclosed in single quotes

These directive define a program segment. Align, combine, and class specify
how the segment will be aligned in memory, combined with other segments,
and ordered with respect to other segments. See Chapter 14.

542

SEQ

Directs the assembler to leave the segments in their original order. Has the
same effect as (ALPHA,

STACK
Syntax: .STACK (size)

where size is a positive integer.

A simplified segment directive which defines 3 stiack segment of size bytes,
Detault size s 1 Kilobyte,

STRUC and ENDS

Used to declare a structure. This is a collection of data objects that ¢an he

accessedd symbolically as a single data object. See the Microsuft Macro Assembler
Prograrmmer’s Guide,

SUBTTL
Spnlax: SUBTTL (text)

Causes a subtitle of up to GO characters to be placed on the third line of each
page in an assembly listing. May be used more than once.

TITLE
Syntux: TITLE {text)

Causes a ftile to be placed on each page of an assembly listing. May be used
only once.

JXALL

Causes the jsseinbler to list all statemetits in a macro expansion that produce
code. Comments ¢ suppressed.

XCREF
See \CRLF.

XLIST
See .LIST.

CT 215

