

Table F.l Register Encoding
REG wro W=l

000
001
010
011
100
101
110
111

AL Ax
CL cx
DL D X
EL BX
AH SP
Cl-l BP
DH 5.1
BH DI

Table F.2 Segment Register Encoding
SEC Register
00 E S
01 CS
10 SS
I? DS

AAA: ASCII Adjust for Addltion
Corrects the result in AL of adding hvo unpacked BCD dlglts or two ASCII digits.
Format: AAA
Oprratlon: If the lower nibble of AL Is greater than 9 or If AI: Is set to

1, then AL 1s incremented by 6, AH Is incremented by 1,
and AF is set to 1. This Instructlon always clears the upper
nibble of AL and copies AF to CF.

Flags: Affected-AF, CF
Undefined-OF, PF, SF, ZF’

Encoding: 00110111
3 7

AAD: ASCII Adjust for Division
Adjusts the unpacked BCD dividend In AX In preparation for division.
Format: AAD
Operation: The unpacked BCD operand In AX is converted Into binary

and stored in AL. Thls is achieved by multIplyIng AH by 10
and addlng the result to AL. AH Is then cleared.

Flags: Affected--PF$ SF, ZF
Undefined-AF, CF, OF

Encoding: 11010101 00001010
D5 OA

AAM: ASCII Adjust for Multiplication

Converts the result of multiplying two BCD digits into unpacked BCD format.
Can be used in converting numbers lower than 100 into unpacked BCD format.
Format: AAM
Operation: The contents of AL are converted into two unpacked KD

digits and placed in AX. AL is divided by 10 and the quo-
tient is placed in AH and the remainder in Al..

CT215 5 0 3

Flags: Affected-PF, SF, ZF
I Intlcfinrtl-Ali 0, OF

l:lllUdlll~: I I II I II 1 utr uuuuIuJu
D4 OA

AAS: ASCII Adjust for Subtraction

Corrects the result in AL of subtracting two unpacked ED numbers.
Format: RAs
Operation: If the lower nibble of AL Is greater than 9 or If Al: is set to

1, then AL 1s decremented by 6, AH 1s decremented by 1,
and AF is set to 1. This instruction always clears the upper
nibble of AL and copies AF to CF.

Flags: Aflected-AF, CF
Undefined-OF, PF, SF, ZI:

Encoding: 00111111
3F

ADC: Add with Carry
The carry flag is added to the sum of the source and destination.
I:ornl;lt: AIK? dcstinat.ion, source
Opcmtiorr: II (:I: = 1, then (dust) = (source) + (ilest) + 1

If CF = 0, then (dest) = (source) + (dest)
Flags: Affected-AC CF, OF, PF, SF, ZF
I:ncoding: Memory or reglster with register

OOOlOOdw m o d reg r / m
Immedhte to accumulator
0001 OlOW data
Immediate to memory or register
100000sw mod 010 r/m data
(s is set if a byte of data is added to ldbit memory or register.)

ADD: Addition

klrlllill: ADU destination,source
Operation: (dest) = Lxlurce) t (dest)
Flags: Affected-AF, CF, OF, PF, SF, ZF
Kncoding: Memory or register with register

OOOOOOdw mod reg r/m
immediate to accumulator
000001 ow CLlL‘l
Immetli;ite to memory or register
luuLluusw IlW<l uuu l/111 ChLGl
(s is set if a byte data is add4 to If&It memory or register.)

AND: Logical AND
Format: AND destination,source
Operation: Each bit of the source is ANDed with the corresponding bit

in the destination, with the result stored in the destination.
Cl: and 01: are cleared.

Flags: Atfected-Cl; 01) PF, 9) i!F
Undefined: Al:

I:.ncoding: Memory or register with register
OOlOOOdw m o d rq r / m
lmmediate to accumulator
0010010w Aic

5 0 4
C T 2 1 5

Immediate to memory or register
1000000w mod 100 r/m data

CALL: Procedure Call

F o r m a t : CALL target
Operation: The offset address of the next requcntlal Instruction Is

pushed onto the stack, and control Is transferred to the tar-
get operand. The target address is computed as follows: (1)
intrasegment direct, offset = IP + dlsplacemmt, (2) Intrasep
ment indirect, offset = @A), (3) Intersegment direct, seg-
ment:offset given in InstructIon, and (4) Intersegment
indirect, segment = (EA +2), offset = (EA).

Flags: Affected-none
Encodlng: lntrasegment Direct

11101000 diap-low disp-high
Intraqsegment Indlrect
11111111 mod 010 r/m
Intersegment Direct
10011010 orf~cL-lnw oCfsrL-hLyl1 :Ioy-lP.4 :;\q-
high

.

Intersegment Indirect
11111111 mod 011 r/m

CBW: Convert Byte to Word

Converts the signed E-bit number in AL into a signed M-bit number in AX.
Format: CUW
Operation: If bit 7 of AL 1s set, then AH gets FFh.

It bit 7 of Al. Is clear, then All is clcarcd.
Flags: Affected-none
Encoding: 10011000

98

CLC: Clear Carry Flag

Format: CLC
Operation: Clears CF
nags: Affected-CF
Encoding: 11111000

FB

CLD: Clear Direction Flag

Format: CLD
Operation: Clears DF
Flags: Affected-DF
Encodlng: 11111100

FC

CLI: Clear Interrupt Flag

Disables maskable external Interrupts.
Format: CL1
Operation: Clears IF
Flags: Affected-IF
Encoding: lllliOl0

FA

CT 215 5 0 5

CMC: Complement Carry Flag

l~lWll.lt: CMC
Operation: Com]Awlcllts CF
FlagS: Affected-CF
Encoding: 11110100

F5

CMP: Compare

Compares Iwo opcrand~ hy suht mction. The flags are affcctcd, hut the rc4t
ib 1101 +torcd.
I:ormal: CMP destination,source
Operation: The source operand is subtracted from the destination and

the flags are set according to the result. The operands are
not affected,

F l a g s : Affected-U, CF, OF, PF, Sl:, ZF
Encoding: Memory or register with register

OOlllOdw mod reg r/m
Immediate with accumulator
OOllllOw data
Immediate with memory or register
100000sw mod 111 r/m data

CMPSICMPSBICMPSW: Compare Byte or Word String

Compares two memory operands. If preccdcd by a I1Cl’ prctix, strings oi
arbitrary size can br compared,
I:ormat: CMPS source-string, dest-string

or
CMPSR
o r
CMPSW

Operation: l’he dcst-string indexed by ED1 is subtracted from the
sourer-string indexed by SI. ‘I’he status flags are affected. If
the control flag DF is 0, then SI and DI are incremented; oth-
erwise, they are decremented. The increments are 1 for byte
strings and 2 for word strings.

Flags: Affected-AR CF, OF, PI:, SF, 21:
Encoding: 1010011"

CWD: Convert Word to Double Word

Converts the signed 16-bit number in AX into a signed 32-bit number In
I)X:AX.
Pormat: CWD
Operation: If bit 15 of AX is set, then DX gets IWF.

If hit IS of AX Is clear, then DX Is cleared.
I’lilgS: Aficcted-none
Ilncodirlg: 10011001

99

DAA: Decimal Adjust for Addition

Corrects the result in AL of adding two packed BCD operands.
1:ormal: DAA
Operation: If the lower nibble of AL is greater than 9 or if AF is set to

1, then &is incremented by 6, and AI: is set to 1. If AL is

5 0 6 CT 215

greater than 9Fh or if the CT: is set, then GOh is added to AL
and C[: is set to 1.

F l a g s : Afrected-Al~, CF, IT, SF, 73
Undefined-OF

Encoding: 00100111
2 7

DAS: Decimal Adjust for Subtraction

Corrects the result in AL of subtracting two packed RCD operands.
FOrmat: DAS
OperalIon: If the lower nibble of AL is greater than 9 or if hi: is srt to

I, lllC11 (lOI\ I\ ~lllllrillllYl IRllll Al. illld (11: Ii SCI I0 I,
Ihp: Afrrclctl--Al~, (:I: w, si: %I:
I:ncoding: 00101111

2F

DEC: Decrement

Format: DEC dcsllnalion
Operation: Decrements the destination operand by 1
F l a g s : Affected-AF, OF, PF, SF, ZF
Encoding: Register (word)

01001 reg
Memory or register
lllllllw mod 001 l/m

DIV: Divide

I'erforms unsigned division.
Format: DIV source
Operation: The divisor is the source operand, which is either mcmor)

or register. For byte division (R-bit sourer) the dividend is
AX, and Ior won\ dlvlslon (I (i-hi1 snurcc) Ihr dl~\d~~n~I i\
I)X:AX. ‘I‘hc quotlcnl is rcturncd to AL (AX for word divi.
sion), and the remainder is returned to AH (DX for word di-
vision). If the quotient is greater than 8 bits (16 bits for
word division), then an INT 0 is generated.

Hags: Undefined-AK CF, OF, PF, SF, ZF
Encoding: llllOllw mod 110 r/m

ESC: Escape

Allows other processors, such as the 8087 coprocessor, to ncccss innln~ctlons.
‘l‘l~ 8086 processor performs no opcrnlion rxccpt to fclch a memory operand
for the other processor.
Format: ESC external-opcode,source
Flags: none
Encoding: llollxxx mod xxx r/m

Vhe xxx sequence indicates an opcode for the coprocessor.)

HLT: H a l t

Causes the processor to cnlrr its halt stntc to wait for an cxlcrnal lntcrrupl.
I:orlnal: flLT
Flags: none
Encoding: 11110100

F4

CT 215 5 0 7

IDIV: Integer Divide

Performs signed division.
Format: IDIV source
Operation: The &visor is the source operand, which Is either memory

or register, For byte dlvlsion (H-bit source) the dividend Is
AX, and for word division (16-bit source) the dividend is
DX:AX. The quotient 1s returned to AL (AX for word divi-
sion), and the remainder is returned to AH (DX for word di-
vision). It the quotient is greater than 8 bits (16 bits for
word division), then an INT 0 is generated.

Flags: Undefined-AF, CF, OF, PF, SF, ZF
Encoding: 1111011w m o d 1 1 1 r/m

IMUL: integer Multiply
krforms 51gned multiplication.
ITOrlllilt: IMUL source
Operation: The mult ipl ier is the source operand, which is either mem-

ory or register, For byte multiplication (g-bit source) the mul-
tiplicand is AL, and for word multiplication (16-bit source)
the multiplicand Is AX. The product is returned to AX
(DX:AX for word multiplication). The flags Cl: and 01: are
set if the upper half of the product is not the sign-rwtension
of the lower half.

Ixlgs: Affected-U, 01:
llndefined-Al: PF, SF, 21:

Encoding: llllOllw mod 101 r/m

IN: Input Byte or Word

Format: 1N accumulator,port
Operation: ‘The contents of the accumulator are replaced by the con-

tents of the designated I/O port. The port operand is either
a constant (for fixed port), or DX (for variable port).

I I;#\: All~ctctl -lIoIIc
I:nLoditlfi: b’i SCil pot t

1110010w p o r t
Variable port

1110110!4

INC: Increment

Format: INC dest inat ion
Operatiun: increments the destination operand by 1.
F l a g s : Affected-Al; OF, I’F, SF, ZF
Encoding: ltegister (word)

01000 reg

h4emory or register
l l l l l l l w mod 0 0 0 r/m

INT: Interrupt
Transfers control to one of 2.56 interrupt routines.
Vormat: INT Interrupt-type
Operation: The FLAGS register is pushed onto the stack, then ‘I‘I: and IF

drc cl~,ti~4, CS is pushed onL0 the sl;tck and IlIen filled by
.Lhc Iligh-older word of Ihe interrupt vector, II’ is pu5lled

5 0 8 CT 215

JNG
JNGE

JNL
JNLE
IN0
JNP
JNS
JNZ
JO ’
JP
JPE
JPO
IS
J2

not greater
not greater nor equal
(Si x01 01) = 1
not less
not less nor equal
not overflow
not parity
not sign
not zero
overflow
parity
panty even
parity odd
sign
ze,o

IMP: Jump

1:orlnilt: JMP C .(I qct

(SF xor OF) or ZF = 1
7C dlsp

7E dlsp

SF = OF 7D dlsp
ZF = 0 and SF = OF 7F d&p
OF = 0 71 dlsp
PF = 0 78 disp
SF = 0 79 disp
ZF = 0 7 5 d,sp
OF = 1 70 dlsp
PF = 1 7A dlip
PF = 1 7A dlsp
PF = 0 78 dlsp
SF = 1 7% dlsp
ZF = 1 74 dtsp

0jru;iliolt: li11111.~11 is I~.lll\llWI~tl IO l;l#Cl Iilll~‘1.
I Idgx Allcctcll-llOllC
I:ncoding: Intra5egn~cnt direct

11101001 disp-low disp-hi
Inlrasegrnent direct short
lllOlOli disp
intrrscglncnt direct
iilO'Oi0I
lntrrscgincrtt indirect
11111111 mod 101 r/m
Intrascjinlcnt indirect
11111111 mud 100 r/m

LAHF: Load AH from Flags

Format: I,AHE
Operation: The low eight bits of the WAGS register are transferred to

AH.
I:lilgs: Arlectcd-none
I‘:rxoding: 10011111

YP'

LDS: Load Data Segment Hegister

l.oads the IX registrr with a segment address and a general register with an
otfaet so that data at the srgment:offset may be accessed.
Format: LDS destination,source
Operation: The source is a doublcword memory operand. The lower

word is pliuxl in the destination register, and the up-
pcrword is placed in DS.

5 1 0 CT215

1kJrI11al: LEA desLination,source
Operation: The offset address of the source memory operand is placed

in the destination, which is a general register.
Flags: Affected-none
Encoding: 10001101 mod reg r/m

LES: Load Extra Segment Register

Loads the 65 register with a segment address and a general register with an
offset so that data at the segment:offset may be accessed.
Format: LEs destination,source
Operation: The source Is a doubleword memory operand. The lower

word Is placed in the destination register, and the up-
perword 1s placed In ES.

FlajiS: none
1:ncoding: llO@OlOO mod rcq r / m

LOCK: Lock Bus

In a multiprocv\tor rnvironmcnt, locks the bus.
1+11.111;11: ,,I Vi’
C)peratioll: I.OCK is used as a prefix that can precede any instruction.

I‘he bus 1s locked for the duration df the execution of the in-
struction to prevent other processors from accessing memory.

ITlags: none
I-ncoding: 11110000

FO

LODSILODSBILODSW: Load Byte or Word String

Transfers a memory byte or word Indexed by SI to the arcuniuMor.
Vormat: LODS source-str ing

o r
LODSB
o r
LODSW

Operation: ‘IlIc \ourcc byte (word) is loatlctl in10 Al. (or /?Si. SI i\ inc’rc-
mcnlcd by 1 (or 2) if DI: is clear; otherwise SI is decrrmcnlnl
by 1 (or 2).

Flags: Alfected-none
I:rlcotlill#: lnlollnw

LOOP

Loop until count is complete.
Format: LOOP short-label
OperatIm: CX IS decremcnted by 1, and If the result Is not zero then

control is transferred to the labeled InstructIon; otherwise
control flows to the next instruction.

Flags: hllcrtcd-llolle

Encoding: 11100010 dlsp
E2

LOOPEILOOPZ: Loop if Equal/Loop If zero

A loop is controlled by the counter and the ZF.
Format: LOOPE short-label

o r

CT215 5 1 1

MUL: Multiply

Unsigned multiplication.
Format: MUL source
Operation: The multiplier Is the source operand which is either mem-

ory or register. For byte multiplication (g-bit source) the mul-
tiplicand is AL and for word multiplication (16-bit source)
the multiplicand is AX. The product is returned to AX
(DX:AX for word multiplication). The flags CF and 01: are
set if the upper half of the product is not zero.

Flags: Affected-CF, 01:
Undefined-AF, PF, SF, ZF

Encoding: 1111011w mod 100 r/m

NEG: Negate

Forms hvo’s complement.
Format: KEG destination

OpCWliOll. ‘l’hc destinatmn opctand is subtracrcd from all I’s (OWh for
hytcs and 0lVl+I~ for words). Thrn a 1 is added and tllc rc-
suit placed in the destination.

14dgS: Affected-AF, CI, OF, PF, SF, ZF
i:t lcotli ng: :111011w mod 011 r/m

NOP: No Operation

l~utlllat: NO!=
Op~rat~~~: No operation Is performed
FlagS: Affected-none
Encoding: 13010000

30

NOT: Logical Not

l~orm.lt: NOT destination
Operation: Forms the one’s complement of the destination.
Flags: Affected-none
Encodmg: llllOllw mod 010 r/m

OR: Logical Inclusive Or

Format: OH destination,source
Operation: Performs Ingiral OR opcmtlnn on rnch hll poritinn of thr op.

cr,mtls and j~laccs the result In the drstlnatlon.
FhgS: Affected-CF, OF, PF, SF, ZF

Undefined-Al:
Encoding: Memory or register wlth register

OOOOlOdw m o d reg r / m
immediate to accumulator
OOOOllOw d a t a
Immediate to memory or register
lO@OOOOw mod 001 r/m

OUT: Output nytn or Word

Pormat: WI accumulator,port
Operation: The contents of the designated I/O port are replaced by the

contents of the accumulator. The port is either a constant
(for fixed port) or DX (for variable port).

5 1 3

I lags: Af fcc tcd-none
I:ncoding: Fixed Port

1110011%’ port
Variable port
1llGlllW

POP: Pop Word Off Stack to Destination

I~01.111at: kOP deskination
Operation: ‘l’he contents ot the destination are replaced by the word at

the top of the stack. ‘The stack pointer is incremented by 2.

IlagS: A t fec ted -none

Encodmg: Gcnerdl register
G!Oll reg
Scpllcnt rcgktrr

,lOU :,x-/j I II

hlcnlory or rcgistcr
1uu01111 mod 0 0 0 r/m

POPF: Pop Flags Off Stack

l,ormat: POIJ’F

Operation: Transfers tlag bits from the top of the stack to the FLAGS reg-
Ister and then increments SP by 2.

IFlag\: Atlccted--all

I~.licoding: 1LJn31301

‘3 i,

PUSH: Push Word onto Stack

11111111 mod 110 r / m

PUSHF: Push Flags onto Stack

RCL: Rotate Left Through Carry

5 1 4 Cl-215

placed in CL. When the count is 1 and the leftmost two bits
of the old drstinatlon are equal, then OP Is cleared; if they
arc uncqunl, 01: is set to 1. When the count is not 1, then
01: is undefined. CL is not changed.

Iklp Affected-Cf;OF
I:ncodl ng: 110100vw n o d 0 1 0 r/n!

If v - o , c’sunt-1
I f v-1, count . - (CL)

RCR: Rotate Right Through Carry

Ilot‘itc\ dcstinntlon right through the CF flag one or more times.
I~ormdt: RCR tIPsI. inat 1 on, 1

or
WI< dust i lation,CL

upcr<lun ‘Ihc’ first format rotates the destination once through Cl: re-
sulting 111 Ihc Isb being placed In Cl’ and the old CI: ended
in the msb. ‘1’0 rotate more than once, the count must be

/ placed in CL. When the count Is 1 and the leftmost two bits
of the new dwtination are equal, then 01: is clrarcd; if they
are unequd, 01: I S set to 1. When the count is not I , then
01: 15 undrfincd. Cl. is not chnnjicd.

I i<lfi\: Allc~tctl-~:l~, 01:
l.nc-nrling: llOlCOvw m o d 011 r/m

If ” _ 0, count = 1
if ” :- 1, count = (CL)

REPlREPZlREPElREPNElREPNZ: Repeat String Operation

‘I Iv string opwation that follows is repeated while (CX) is not zero.
I~ormat: KEP/REPZ/KEP~/REPNE/REPNZ string-instruction

Operat ion: ‘I’he string operation is carried out until (CX) is decremcnted
to 0. For CMI’S and SCAS operations. the ZF is also used in
tcrminatin): the ilrr;ltlon. For lll:I’/l~l~l’~/l~~.l’~~. lhr (:hfl’S antI
SCAS opcr,llions arc repeated if (CX) is not zero and ZI: i5 1.
f:or I~T:I’NI:/I~I’J’NZ, the CMPS and SCAS operations are re-
pcatcd if (CX) is not zero and 21: Is 0.

I+lgS: See the associated string instruction.
Encoding: REP/REPZ/REPE 11110011

REPNE/HEPNZ 11110010

RET: Return from Procedure

Ilcturtl\ contrn1 after a called prnccdurr has brrn rsccutcd
I urm.1t: HLI’ [pop-v~lluej
op”“tion: If lIEI‘ is wthin a NEAR procedure, it i(translated Into an m.

trdscgmcnt return, which updates the II’ by popping one
word from the stack. If RET is within a FAR procedure, it i!,
translated into an intersegment return that updates both the
II’ and CS. The optional pop value specifies a ~lumbcr of
bytrs in the stack to be discarded. ‘l’hese are parameters
pasxed to the procedure.

I4ajis. Affected-none
I:lxndi~l~:: Il1tr;l\r~nwllt

I i 0 0 0 0 1 I
Intrasegmcrlt with pop value
1100(1010

CT215 5 1 5

Imcrsegment
11001011
Intersegment with pop value
11001010

ROL: Rotate Left

Rotates destination left one or more times.
Format: ROL destination,1

"I

hOL destination,CL
Operation: The ftrst format rotates the destination once; CF also gets

the msb. To rotate more than once, the count must be
placed in CL. When the count is 1 and the new CF is not
the same as the msb, then the OF Is set, otherwise, OF is
cleared. When the count is not 1, then OF is undefined. CL
is not changed.

Flags: Affected-CF, OF
Fncoding: 110100vw mod 000 r/m

1t " = 0, count = 1
If " = 1, count = (CL)

ROR: Rotate Right

Rotatr> tlcstinatlon right one or more times.
l:ormat: HOK destination,1

"1
ROR destination,CL

Operation: The first format rotates the destination once; CF also gets
the Isb. To rotate more than once, the count must be placed
in CL. When the count is 1 and the leftmost two bits of the
new destination are equal, then OF is cleared; if they are un-
equal, OF is set to 1. When the count is not 1, then 01: is
undefined. CL is not changed.

Nags: Attectcd-CF, OF
Encoding: 110100vw mod 001 r/m

If \I = 0, cclunt = 1
If " = 1, count = (CL)

SAHF: Store AH in FLAG5 Register

Format: SAHF

Operation: Stores five bits of AH into the lower byte of the FLAGS regis-
ter. Only the bits corresponding to the flags are transferred.
The flags in the lower byte of FLAGS register are SF = bit 7,
21: = bit 6, AF = bit 4, 1’1: = bit 2, and Cl: = bit 0.

Flag\: Affected-AF, ‘3, PF, SF, ZF
Encoding: 10011110

Y E

SAUSHL: Shift Arithmetic Left/Shift Logical Left

Format: SAL/SHL destination.1
01
SAL/SHL destination,CL

Operation: The first format shifts the destination once; CF eets the MI
atld 3 0 is shiftcul into the lsb. To shift more than once, the
count must br placed in CL. When the count is 1 and the

5 1 6 CT215

new Cl: is IIUL the same as the msb, then the OF is set; othcr-
wise, OF is cleared. When the count is not 1, then OF is un-
defined. CL is not changed.

Flags: Affected-Clj OF, rg SF, ZF
Undefined-Al:

Encoding: 110100vw mod 100 r/m
If " = 0, count - 1
If " = 1, count = (CL)

SAR: Shift Arithmetic Right

Format: SAR dest~nation,l
01
SAR drstin&tion,Cl,

Opcratlon: 'IIlC Ilrtl l0rlllilt ShlItS ttlC dCStlIlntlOl1 OIlW; Cl: gCtS tllc ISb

and the msb is repeated (sign is retained). To shift more
than once, the count must be placed in CL. When the
count is 1 01: is cleared. When the count is not 1, then OF
is undefined. CL is not changed.

Flags: Affected-CR OF, PF, SF, ZF
Undcflned-AF

Encoding: 110100vw mod 111 r/m
If " = 0, count = 1
If v = 1, count = (CL)

SBB: Subtract with Borrow

Format: SBR destination,source
Operation: Subtracts source from destination; and if CF is 1 then sub-

tract 1 from the result. The result is placed in the destina-
tion.

Flags: Affcctcd-AF, CF, OF, PF, SF, ZF
Encoding: Memory or register with register

OOOllOdw mod reg r/m
Immcdlate from accumulator
OOOlllOw d a t a
Immediate from memory or register
100000sw m o d 011 r/m data
(s is set if an immediate-data-byte is subtracted from 16.bit
memory or register.)

SCASISCASBISCASW: Scan Byte or Word String

Compares memory against the accumulator. Used with REP, it can scan mul-
tiple memory locations for a particular value.
Format: SCAS dest-string

or
SCASB
o r
SCASW

Operation: Subtracts the destination bytr (or word) addressed by Dl
from AL (or AX). The flags are affected but the result Is not
saved. DI is incremented (If DF - 1). or decremented (if Dt: -
0) by 1 (byte strings) or 2 (word strings).

Flags: Affected-Al) CF, OF, PF, SF, ZF
Encoding: 1010111w

CT 215 5 1 7

SHR: Shift Logical Right

SHR destination,CL

Operation: ‘l‘hc iir$t format shifts the dcslinntlon once; CI: gclr the Is\,
and a 0 is shifted into the msb. ‘lb shift rncae than once,
the count must be placed in CL. When the count is 1 and
the leftmost two bits are equal, then OI: is cleared; other-
wiac, 01: is set to 1. When the count is not 1, then 01: i5 111,.
tk4illcd. Cl. i3 not changnl.

I%l&p: AIfLm=d-cI; OIJ, I’F, SF, ZF
Undefi~~i--Al:

I:ncodinfi: 110100vw m o d 1 0 1 r / m

If ” = 0, count = 1

1r ” = 1, count = (Cl,)

STC: Set Carry Flag

STI: Set Interrupt Flag

IGmnat: ST 1
Operalion: II: is set to 1, thus enablin): external interrupts
Illa@: Alicckd--11:
I:ncodin~: 11111011

1, 1%

STOSISTOSBISTOSW: Store Byte or Word String

518. C T 2 1 5

SUB: Subtract

1ormat: SUB destination,source
O['cr2llbIl: Sul~~ts source horn dcsthtion. ‘Ihe result is placed In tlte

dcstlnation.
I:lilg’: Affcclcd-Al) Cl:, Or, I’F, SF, 21:
Encoding: Memory or register with register

001 01 Oclw n1vd l-c‘, r / m
Immctlinte from accumulator
0010110w data
In~mediale horn memory or register
100000~w mod 101 r/m data

(s is set if an intmcdintc-tlata-byte is suhtmcled from I ti-hit
memory or register.)

TEST: Test (Logical Compare)

I:ormat: TEST dostination,source
Operation: The Iwo opcmnds are ANDcd to affect tltc flags. The opcr

antls arc not nffectcd.
IhgS: Aflcctcd-Cl) OF, PIi SF, ZI:

llndcfinrd-AF
I‘:ncoding: Memory or rcgislcr with rcgistcr

1000010w m o d reg r / m
lmmcdiate with accumulator
1010100w data
Immediate with memory or register
llllOllw mod 000 r/m data

WAIT

Format: WAIT
Operation: The processor is placed in a wait state until activated by an

cxtrrual interrupt.
Flags: Aflccted-none
Encodlng: 10011011

9t!

XCHG: Exchange

tkmat: XCtlG dcst ination,source
Operation: The source oprmnd and the tlcstinntion opcmntl are intu-

cll~lllgctl.
lkgs: Affcclctl-nouc
Encoding: Ikgistcr with nccumulator

10010reg
Memory or register with register
1000011w mod reg r/m

XLAT: Translate

Performs a table lookup translation.
Ironnat: XLAT source-table

O~rcmlion: IIX 1m~51 contain the ofkct ntldrcss of Ihc snurcc lohlc, whkh
Is ;\I most 256 hytcs. AL should contain the index of the table
clcmcnt. The opcrntion replaces AL by the contents of the ta-
blc clcmcnt addrcssrvl by RX and AL.

Flags: Affected-none
Encoding: 11010111

D7

CT 215 5 1 9

XOR: Exclusive OR

l%xmal; XOR dest inat ion, source
Operation: The exclusive OR operation is performed bit-wise wlth the

source and destinatlon operands; the result is stored In the
destination. CF and OF are cleared.

Wags: Affected-CF, OF, PI\ SF, ZF
Undeflned: AI:

Encoding: Memory or register with register
OOllOOdw m o d req r / m
Immediate to accumulator
oollolow &L&I
Immediate to memory or register
1000000w mod 110 r/m data

8087 instructions The 8087 uses several data types, when transferring data to or from
memory, the memory data definition determines the data type format. Table
I: .3 >l~ows the association bctwccn the HOH7 data types and the memory data
dcfinitionr. In this section we only give 8087 instructions for simple arith-
metic operations. Check the 8087 manual for other instructions.

FADD: Add Real

ibmat: FADD
OI
FADD sou=ce
or
FAIJD destination,source

0pu;llion: Adds a source operand to the destination. 14.~ the Iirst form,
the source operand is the top of tile stack and the destinn-
tion is ST(l). The top of the stack is popped, and its value Is
cxidcd to the new top. For the second form, Ihe source is ei-
ther short real or long real in memory; the destln.ition i s
the top of the stack. Por the third form, one of the opwnds
is the top of the stack and the other is another stack rrgis-
ter; the stack is nut popped.

Table F.3 8087 Data *per

Data vpe Size (bitr)

Word mteger 16
Short Integer 32
I ong w.qcr 64
Packed decimal 80
Short real 32
Long redi 64
Tttltporary real 8 0

Memory
Definition
ow
DD
W
D T
DD
w
D T

Pointer ‘I)rpe

WORD PTR
DWORD PTR
QWORD PTR
TINE PTR
DWORD PTR
QWORD PTR
TBYTF. PTR

5 2 0 C T 2 1 5

FBLD: Packed Decimal Load

Format: FHLD- s”urCe
Operation: Loads a packed decimal number to the top of the stack. The

source operand is of type DT (10 bytes).

FDSTP: Packed BCD Store and Pop

Format: FBSTP destination *
Operation: Cunverts the top of the stack to a packed BCD format and

stores the result ln the memory destination. Then the stack
IP popped.

FDIV: Divide Real

Format: FDIV
Or

FDIV source
o r
FDIV destlnation,source

Operation: Llivides the destination by the source. For the first form, the
source oprrnnd is the trip of thr stack and the drc\innlion is
SI‘(I). The top of the stack is popped and its vniuc Is used to
divide into the new top. For the second form, the source is
either short real or long real in memory; the destination is
the top of the stack. For the third form, one of the operand5
IS 111~ top of the stack and the other Is another stack rcgir-
ter; the stack Is not popped.

FIADD: Integer Add
Format: FIADD source
Opcralion: ktds the source operand to the top of the stack. The soucc

O~C.I~III~ can bc cithrr a short lutrgcr or a word intcgcr.

FIDIV: Integer Divide
Format: FIDIV source
Operation: Divides the top of the stack by the source. The source oprr-

and can be either a shorl integer or a word integer.

FILD: Integer Load

I~Ol2ll~l: 1:) 1.1) IcIIrcP
Operation: Loads a memory integer operand onto the top of the stack.

The source operand is either word Integer, short integer, or
long Integer.

FIMUL: Integer Multiply

Format: FIMUL source
Operation: Mulliplics the SOIIKC opcmnd to the top of the stack. The

source operand can be either a short integer or a word integer.

FiSl! hteger Store,
Format: FIST destination
Operation: Hounds the top of the stack to an integer value and stores to

a memory location. The destination may be word integer or
short integer. The stack is not popped.

CT 215 521

FISTP: integer Store md Pop

Format: FISTS d e s t i n a t i o n
Operation: Ilountls the top of the stack to an integer value and stow5 10

a memory location. Then the smack is popped. l‘hr tlc,tiru-
tion may be word integer, short integer, or long integer.

FISUB: Integer Subtract

F o r m a t :F I S U B ~~“rce
Operation: %~btmcts the source operand from the top of the st~tk. ‘Ihe

bour~e opc~and can be either a short intqer or a word intcgvr.

FLD: Load Real

l%muC1l: lVl.ii Liource
Oprration Loads a real operand onto the top of the stack. The source

~ruy be ;I stack register ST(i), or a memory location. I:or a mcm.
my operand, the data typ+ may be any of the real formars.

FMUL: Multiply Real

tMUL
or
FMUL SOUIC~
or
F’MUL destination, source

Operation: Multiplies a source opcraud to tl~e destination. For the tir,t
form, the source operand is the top of the stack and the dcr.
tlnation is W(I). The top of the stack is popped and its
value is multiplied to the new top. For the second form, the
source ia cilhcr short real or long real in memory; the dWi-
nation is the top of the stack. For the third form. one of the
operands is the top of the stack and the other ii another
Quick rvgistrr; thr stack is not popped.

FST: Store Real

FSTP: Store Real and Pop

I:or~~h~t: FSTP desLination
Operation: Stores the top of the stack to a memory location or another

stack rcgictcr. ‘l’heu the stack is popped. The memory dcrti-
nation may be short real (doubleword), long real
(quadword), or temporary real (10 bytes).

~5~6: Subtract Heal

5 2 2 CT215

Oncration: Subtracts a wurcc operand from the destination. For the
ftrst form, lhc s011rcC operand is the top of the stack and the
destination is ST(I). The top of the stack is popped and its
value is subtracted from the new top. kor the second form,
the soum is cithcr short real or long real in memory; the
destination is the top of the stack. For the third form, one
of the operand is the top of the slack and the other is nn-
other stack register; the stack Is not popped.

IMUL: integer Immediate Multiply
Format: IMUL destinatlon,immedlaLe

Or

IMUL destination,source,im~edlate

Operation: f:or the first format, the imn~cdinlc opcrimd, which m11st Iv
a byte, is multiplied with the destination, whxh must bc a
16-bit register. The lower 16-bit of the result is stored in the
rcgistcr. For the second format, the 8. or 16.bit immediate
operand is multiplied with the source operand, which may
be a 16-bit register or a memory word. 1 he lower 16.bit of
the result is stored in the destination, which must be a 16.
bit rqistcr. The flags CF and 01: are ~cl if the upper half of
the product is not the sign-extension of the lower half.

1%1gs: Affected-CT, 01:
1lnrlrrinrtl-41) rl) SI: %I:

I:t1Lodittg: OllOlOnl mod reg l/m d a t a [d,\ta 11 s='Ol

INSIINSBIINSW: Input from Port to String
Transfers a byte or word string clement Irom a port to memory. Multiple
by& or words can be transferred if the prefix RCI is used.
F o r m a t : I N S deotlnatjon-strlng,porL

or

INSB

or
INSW

Operation: A byte or weld is transferred from the port designated by
DX to the location ES:DI. DI is then incremented by I (or 2
for word strings) if DF = 0; otherwise, DI is decrcmentcd by
1 (or 2 for word strings).

IGg5: Affected-none
Encoding: 0110110w

CJT215 5 2 3

OUlSlOUTSdOUTSW: Output String to Port

‘I‘ransfers a byte or word string element from memory to a port. Multiple
bytes or words GUI be transferred lf the prefix REP is used.
Format: OUTS destination-string,port

Or
OUTSB
Or
OUTSW

Operation: A byte or word 1s transferred from memory located al DS:Sl
10 the port dcsignatcvl by DX. SI Is then incremuntrd by 1
(or 2 for word strings) if DI: = 0; otherwise, Sl is
decremented by 1 (or 2 for word strings).

Flags: Affected-none
Encoding: 0110111w

POP& Pop All General Registers

Format: POPA
Operation: The registers are popped in the order DI, 9, RI’, SP, RX, 1)X,

cx, rind AX.
Encoding: 01100001

61

PUSH: Push,lmmediate

Format: PUSH data
Operation: The data may be 8 or 16 bits. A data byte is slgncd exhtndcd

into 16 bits before pushing onto the stack.
Flags: Affected-none
Encoding: OlfOlOsO data [data if s = 01

PUSHA: Push All Ganeral Registers

Format: PUSIIA
Operalion: ‘l’he registers are pushed in the order AX, CX, DX, UX, origi-

nal SP, UP, SI, and DI.
Flags: Affected-none
Encoding: 01100000

GO
The general format of shifts and rotates with lmmcdiate count values is:

Opcoda du:jti.llation,immediate

where opcode Is any one of RCL, RCR, ROL, ROR, SAL, SHL, SAR, and SIIR.
If the immediate value is 1, then the instruction is the same as an $086
instruction. For an immediate voluc of 2-31, the instruction operates like an
8086 instruction in which CL contains the value. The 80286 does not allow
a constant count value to be greater than 31.

The encodings for immediate values of 2-31 are

RCL
1100000w mod 010 r/m

RCR
1100000w mod 011 r/m

ROL
1100000w mod 000 r/m

ROR

11OOOOOw m o d OCI r/m ,, I..

,

5 2 4 CT 2lj

SAI./SHL
1100000w mod 100 r /m

SAR
1100000w mod 111 r/m

SIIR
1100000w mod 101 r/m

80386 lnstructims The real-mode 80386 instruction set includes all real-mode 80286
instructions plus thcit 32-bit extensions, together with six groups of new
instructions, (1) bit scans, (2) bit tests, (3) move with extensions, (4) set byte
011 condition, (5) double-precision shifts, and (6) move to or from special
registers. We only give instructions in groups 1-S.

Bit Scan instructions

The bit scan InstructIons are USF (bit scan forward) and BSR (bit scan
reverse). They are used to scan an operand to find the first set bit, and thuy
dlffcr only In the direction of the scan.
Vormats: BSF destination,source

or
BSR destination,source

Operation: The destination must be a register, the source is either a reg-
ister or a memory location. They must hc both words or
both tloublcwords. The source Is scanned for the firs1 set bit.
If the bits are all 0, then ZF is cleared; otherwise, ZF is set
and the destination register is loaded with the bit position
of the first scl bit. For BSF the scanning is from bit 0 to the
msb, and for BSR the scanning is from the msb to bit 0.

Flags: Affected--ZI:
Ilncoding: BSF

00001111 10111101 mod reg r/m
B S R
00001111 10111101 mod req r/m

Bit Test Instructions

The bit test instructions are BT (bit test), BTC (bit test and comple-
mcnt), BTR (bit test and reset), and BTS (bit test and set). They are used to
copy a bit from the destination operand to the CI: so that the bit can hc
tesk:d by a JC or JNC instruction.

Format: BT destinatinn,source
o r
BTC destination,source
o r
BTR destination, source
o r
BTS destination, source

Opera t ion : ‘IIle source speclfles a bit posltlon In the destination to be
copied to the CF. BT simply copies the bit to CF, 8TC roples
the bit and complements it In the destination, RTK copies
the bit and rrsrls it In the destination, and RTS cnl~ics the

-

CT 215 5,25

bit and sets it in the destination. The source is either a 16-
bit register, 32-bit register, or an R-bit constant. The destina-
tion may be a 16-bit or 32-bit register or memory. If the
source is a register, then the source and destination must
Ibavc lhc same size.

Flags: Affected-CF

Encoding: Source is U-bit immediate data:
In
00001111 10111010 mod 100 r/m
WC
00001111 10111010 mod 111 r/m
1iI.R
00001111 10111010 mod 110 r/m
UTS
00001111 lOlllO m o d 1 0 1 r / m
S o u r c e i s rcglster:
UT
UilUU I I I I IO I 000 I I IllUCl ‘k”, , /Ill
WC
00001111 10111011 mod ECJ r/m
RTR
00001111 10110011 mod reg r/m
UT’;
00001111 10101011 mod reg r/m

Move with Extension Instructions

The move with extension instructions are MOVSX (move with sign.
extend) and MOVZX (move with zero-extend). These instructions move a
small source into a bigger dcstlnation and extend to the upper half with the
sign or a zero.
Ibrlllat: M O V S X ciestination,source

o r
M O V Z X destination,source

Operation: ‘IIe destination must be a register, the source is either a reg
ister or memory. If the source is a byte (or word) the de\tina-
lioli i5 ;I WWO (or tl~mhlewortl). MOVSX topics iIINl ripI
cxlcnrls the source into the tlotiftalion. MOVZX copes ;IINI
zero extends the source into the destination.

Flags: Affected-none
Encoding: MOVSX

00001111 1011111w mod reg r/m
MOVZX
00001111 1011011W mod reg r’/m

Set Byte on Condition Instructions

The set byle on condition instructions set the destination byte lo 1
if the condition is true and clear it if the condition is false.

Format: SET(condition) d e s t i n a t i o n
Operation: The destination is either an a-bit register or memory. It is

set to 1 if condition is true and to 0 if condition is false.
Nags: Affected-nom
Encoding: 00001111 opcode mod 000 r/m

(the opcodv hytla is glvcn In the following in hex)

526 CT 215

Instruction

SETA
SETAE
SETB
SETBE
SETC
SCTE
SETGG
SETGE
SETL
SETLE
SCTNA
SETNAE
SETNB
SLTNUE
SETNC
SETNE
SETNG
SCTNGE
SETNL
SEl-NLE
SETNO
SETNP
SETNS
SETNZ
SET0
SETP
SEWE
SCTPO
SETS
SET2

Setff

above
above or equal
below
b e l o w cr elilal
carry
equal
greater
greater or equal
less
less or equal
not above
not above or equal
not below
(not below or equal
not car ry
not equal
not greater
not grcatet nor equal
not less

not less nor equal
not overflow
not parity
not sign
not zero
overflow
parity
parity even
parity odd
sign
zero

Condition

CF = 0 and ZF = 0
CF = 0
CF= 1
CF = 1 or ZF = 1
CF = 0
ZF = 1
ZF = 0 and SF = OF
ZF = OF
(SF xor OF) = 1
(SF xor OF) or ZF = 1
CF = 1 or ZF = 1
CF= 1
CF = 0
CF = 0 and ZF = 0
CF = 0
ZF = 0
(SF xor OF) or ZF II 1
(SF xor OF) = 1
SF = OF
ZF = 0 and SF = OF
OF = 0
PF = 0
SF = 0
ZF = 0
OF = 1
PF = 1
PF = 1
PF = 0
SF = 1
ZF = 1

Opcode

9 7
9 3
9 2
9 6
9 2
9 4
9F
9D
9c
9E
9 6
9 2
9 3
9 7
93
9 5
9E
9c
9D
9F
9 1
9B
99
95
90
9A
9 A
98
9 8
9 4

Double-Precision Shift Instructions

The double-prcctsion shift instructtons are SHLD (double-precision
shift left) and Si IllD (douhlc-precision shift right).

Format: GHLV dest.ination, source, count
Of

Operation: The destination is either register or memory, the source is a
register, and both must he of the same size (either 16 or 32
bits). Count is cithcr an I-bit constant or CL. The count
cpecifies the number of shifts for the destination. instead of
shifting in zeros as in the case of the single-precision shifts,
the bits shifted into the destination are from the source.
Ilowevcr, the source is not altered. The SF, ZF, and PI: flags
are set according to the result; CF is set to the last bit
shifted out; 01: and AF are undefined.

C T 2 1 5 5 2 7

Fhgs: Affcacd-SF, ZF, I’& Cl:
Undefined-OF, AF

Encoding: Count is immediate data:
SHLD
00001111 10100100 mod reg r/m [displ data

SHRD
00001111 10101100 mod reg r/m Ldispl data
Count is Cl.:
SI 11.1)
00001111 10100101 mod rey r/m [displ

SkIlID
00001111 10101101 mod reg r/m [disp]

5 2 8 CT 215

