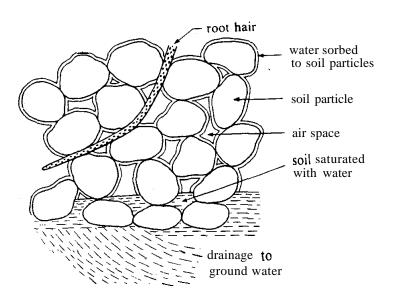
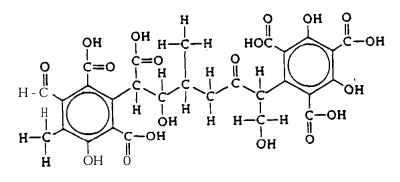

6.1. เคมีของดิน

ดินเป็นส่วนหนึ่งที่สำคัญมากของสิ่งแวคล้อม เป็นตัวกลางให้พืชเกือบ ทุกชนิดเจริญเติบโต

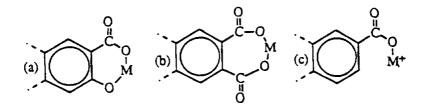

รูปที่ 6.1 Formation of soil

รูปที่ 6.1 ได้อธิบายถึง อากาศ ภูมิประเทศและสิ่งมีชีวิตมีอันตรกิริยาต่อกันอย่าง ไรในการผลิตดิน ดินเป็นของผสมของแร่ธาตุ สารอินทรีย์และน้ำ ส่วนที่เป็นแร่ธาตุ มาจากการแตกย่อยสลายของหินโดยกระบวนการต่าง ๆทางธรรมชาติ แร่ธาตุในดินทัว ๆไปได้แก่อนุภาคเล็กของ quartz (SiO₂), orthoclase (KAISiO₃), albite (NaAISiO₃), epidote (4Ca0.3 (AIFe)₂O₃.6SiO₂.H₂O), geothite (FeO(OH)), magnetite (Fe₃O₄) calcium และ magnesium carbonates (CaCO3, MgCO3) และออกไซด์ของ manganese และ titanium



รูปที่ 6.2 แสดงภาพตัดขวางของชั้นของดิน

ส่วนที่เป็นสารอินทรีย์มาจากพืชต่าง ๆ ในขั้นตอนต่าง ๆของการย่อยสลายและมีประมาณ 5% ในคิน (ดูตารางที่ 6.1) ส่วนมากจะเป็นสารที่ไม่ละลายน้ำ เรียกว่า "ฮิวมัส " องค์ ประกอบหลัก ๆ คือธาตุการ์บอน ไฮ โครเจนและออกซิเจนและสลายตัวทางชีวภาพช้า มาก ๆ โครงสร้างของสารฮิวมิกโดยทั่วๆ ไปดังแสดงในรูปที่ 6.4 สารประกอบฮิวมิก สามารถจับกับไอออนของโลหะได้อย่างแข็งแรงโดยกระบวนการ chelation (รูปที่ 6.5) เนื่องจากมีหมู่ carboxyl และ phenolic hydroxyl จำนวนมาก


รูปที่ 6.3 โครงสร้างอย่างละเอียดของดิน แสดงถึงของแข็ง น้ำ และอากาศ

รูปที่ 6.4 โครงสร้างของ fulvic acid

ชนิดของสาร ประกอบ	องค์ประกอบ	ความสำคัญ
Humus	Degradation-resistant residue from plant decay, mainly C, H and 0	Most abundant organic component, improves soil physical properties, exchanges nutrients, reservoir of fixed nitrogen
Fats, resins and waxes	Lipids extractable by organic solvent	Generally, only several percent of soil organic matter, may adversely affect soil physical properties by repelling water, may be toxic to plants
Saccharides	Cellulose, starches, hemi- cellulose, gums	Major food source for soil organisms, help stabilise soil particles
Nitrogen-containing organics	Nitrogen bound to humus, amino acids, amino-sugars, other compounds	Provide nitrogen for soil fertility
Phosphorus compounds	Phosphate esters, inositol phosphates (phytic acid), phospholipids	Sources of plant phosphate

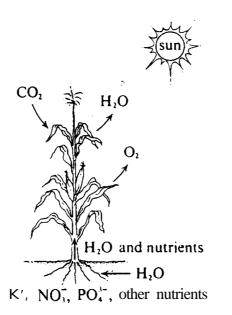
ตารางที่ 6.1 ชนิดของสารอินทรีย์ต่างๆในดิน

รูปที่ 6.5 การจับของไอออนของโลหะ (M²⁺) โดยสารประกอบฮิวมิก (a) by chelation between carboxyl and phenolic hydroxyl, (b) by chelation between two carboxyl groups, and (c) by complexation with a carboxyl group

ดินประกอบด้วยน้ำมาก โดยปกติจะอยู่ในช่องว่างเล็ก ๆระหว่างอนุภาคของดิน ' ในส่วนที่เป็นน้ำจะประกอบด้วยแร่ที่ละลายน้ำได้

6.2 แหล่งที่มาและธรรมชาติของมลพิษในดิน

6.2.1 บทนำ


มลพิษส่วนมากที่ได้พบในดินเราได้อธิบายไปแล้ว เนื่องจากการจับของมลพิษกับ อนุภาคของดิน ดินจะทำตัวเสมอเป็น "sink" สำหรับมลพิษส่วนมาก ซึ่งตกลงมาจาก อากาศ โดยเฉพาะอย่างยิ่งกับสารประกอบไม่มีขั้ว เช่น PCBs และ Dioxins ซึ่งไม่ละลาย ในน้ำ สารประกอบเหล่านี้ส่วนมากจะพบอยู่ในดินและมีความเสถียรมาก และไม่ สามารถจะถูกชะออกไปได้ง่าย ๆ โดยฝนลงสู่แหล่งน้ำ สารประกอบอื่น ๆที่เคลื่อนที่ได้ดี กว่า จะถูกชะล้างออกจากดินลงสู่แหล่งน้ำ โดยเฉพาะอย่างยิ่งน้ำใต้ดิน ดังนั้นดินซึ่ง เป็นศูนย์กลางของวิถีทางการเคลื่อนย้ายสำหรับมลพิษบางชนิด และเป็นจุดสุดท้ายของ วิถีทางของมลพิษอื่น ๆ บางตัวอย่างของมลพิษที่พบในดิน

6.2.2 ยาปราบศัตรูพืช (Pesticides)

สารประกอบประเภทนี้อาจจะเป็นมลพิษที่สำคัญที่สุคในดิน เนื่องจากถูกนำไป ใส่ลงในดินโดยตรงหรือให้กับพืชที่ปลูกบนดิน มลพิษในน้ำเนื่องมาจากยาปราบศัตรูพืช ก็เนื่องมาจากการซะล้างเอาสารเหล่านี้จากดิน ทั่วโลกจะมียาปราบศัตรูพืชประมาณ 2.5 ล้านต้น ที่ถูกนำมาใช้ในการเกษตรกรรม ขอบเขตที่ยาปราบศัตรูพืชที่เกิดอันตรกิริยากับ ดิน จะมีผลต่อสมบัติการเคลื่อนที่และการสลายตัว ยาปราบศัตรูพืชอาจจะสลาย โดยกระบวนการทางเกมีหรือชีวภาพ ปฏิกิริยาการสลายตัวทางเกมีรวมถึงการสลายตัว ด้วยน้ำหรือกระบวนการสลายตัวด้วยแสง องค์ประกอบของดิน (เช่น ดินเหนียว) อาจจะ มีส่วนช่วยในการเร่งปฏิกิริยาการสลายตัวทางชีวภาพได้มีการสังเกตกับยาปราบศัตรูพืช หลายชนิด โดยมากกระทำโดยแบคทีเรียในส่วนที่มีแอกติวิตีของดิน (เช่น Rhizoshere) ที่อยู่รอบ ๆรากของพืช

6.2.3 ปุ๋ย (Fertilizers)

ปุ๋ยสำหรับพืชประกอบด้วยธาตุในโตรเจน (N) ฟอสฟอรัส(P) และโปตัสเซียม (K) เป็นองค์ประกอบหลัก จากภาพรวมของมลพิษ ปัญหาหลักที่มาจากสารประกอบ เหล่านี้เกิดขึ้นเมื่อมันถูกชะล้างลงสู่แหล่งน้ำทำให้เกิดปรากฎการณ์ eutrophication

รูปที่ 6.6 พืชเคลื่อนย้ายน้ำและสารอาหารจากดิน และรับเอา CO2 จากอากาศ และคาย O2

6.2.4 ออกไซด์ของซัลเฟอร์และในโตรเจน (SO_x and NO_x)

ออกไซด์ของซัลเฟอร์และในโตรเจนตกลงไปในดินจากฝนกรด ในดินแบคทีเรีย ที่มีอยู่สามารถจะเปลี่ยน NO และ NO₂ เป็นในเตรท คาร์บอนมอนอกไซค์อาจจะถูก เปลี่ยนเป็นคาร์บอนไดออกไซด์โดยแบคทีเรียและราในดิน

١

6.2.5 ตะกัว (Lead)

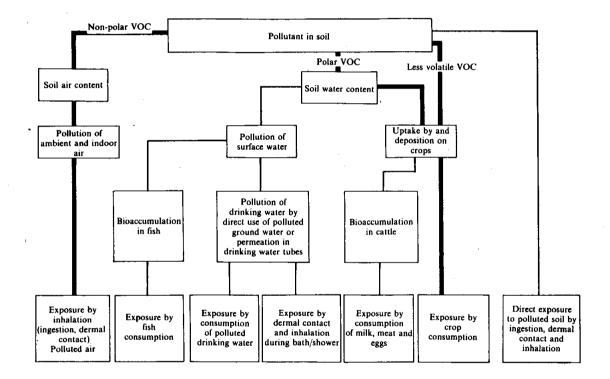
ระดับตะกั่วในดินที่อยู่ใกล้กับถนนที่มีการจราจรหนาแน่นจะสูง ดินยังอาจจะปน เปื้อนด้วยตะกั่วที่มาจากเหมือง และจากการหลอมตะกั่ว (โดยการตกลงมา)

6.2.6 สารประกอบอินทรีย์ที่ระเทยง่าย (Volatile Organic Compounds, VOC)

สารประกอบ เช่น เบนซึน ทอลูอึน ไซลีน และคลอโรอัลเคน จัคเป็นมลพิษ โดยทั่ว ๆ ไปในคิน อาจจะมาจากการรั่วไหลจากถังเก็บและยังอาจจะมาจากการฝังกลบ ในคิน (รายละเอียคเพิ่มเติมมีในเรื่องการฝังกลบขยะ)

6.2.7 Polychlorinated biphenyls (PCBs)

ระดับของ PCBs ในดินในประเทศอังกฤษได้เพิ่มอย่างมากในระหว่างปี 1940-1970 และหลังจากนั้น (จุดจบของการผลิต PCBs) ระดับได้กลับคืนสู่ระดับที่เคยมีในปี 1940 ทั้งนี้ก็เนื่องมาจากการระเหย เพราะโดยมากไอโซเมอร์ที่เบากว่าจะหายไปก่อน ระดับความเข้มข้นของ PCBs ที่สูงได้พบในเขตอาร์กติก เนื่องมาจากการตกลงมาของ สารประกอบเหล่านี้ที่ระเหยมาจากเขตที่อุ่นกว่า


ส่วนใหญ่ของ halogenated dioxins และ dibenzofurans (บางที่อาจจะถึง 99%) ในสิ่งแวคล้อมจะถูกพบในคิน คินทำตัวเสมือนเป็นอ่างของสารประกอบเหล่านี้เนื่องมา จากการจับอย่างแข็งแรงกับอนุภาคของคิน และความเสถียรที่สูงของมัน ระดับของ PCDDs และ DFs ในคินตามเขตชนบทมีค่าโดยรวมประมาณ 90 ppt ในช่วง 140 ปีให้ หลัง ส่วนระดับในคินในเขตเมืองใหญ่ ๆจะมีค่าสูงกว่าหลายเท่านัก

6.3 ผลกระทบจากมลพิษในดิน

ผลกระทบโดยตรงจากมลพิษในดินจะไม่รุนแรงเท่ากับมลพิษในอากาศและน้ำ เนื่องจากมนุษย์และสัตว์ปกติจะไม่กินดิน ดังนั้นผลที่ร้ายแรงที่สุดจะเกิดกับพืช การ เจริญเติบโตของพืชอาจจะมีผลกระทบจากมลพิษในดิน ปัญหาที่รุนแรงกว่าสำหรับ มนุษย์ก็คือ พืชที่ใช้เป็นอาหารเจริญเติบโตมาจากดินอาจดูดซับเอามลพิษ อาหารจะเป็น แหล่งสำคัญของสารเคมีที่เป็นมลพิษหลายชนิดต่อมนุษย์ ปัญหานี้เพิ่มขึ้นโดยผลของ การสะสมทางชีวภาพ

รูปที่ 6.7 แสดงแนวทางที่มีศักยภาพของการได้รับมลพิษของมนุษย์ต่อสาร อินทรีย์ที่ระเหยง่าย (ที่เป็นมลพิษในดิน) สำหรับสารประกอบที่ระเหยได้ง่ายและไม่มี ขั้ว การหายใจเอาอากาศที่มีการปนเปื้อนจะเป็นเส้นทางหลักของการรับเอาสารนั้น ยา ปราบศัตรูพืชในอาหารได้รับความสนใจมาก ได้มีการรายงานในประเทศอังกฤษว่า หนึ่งในสามของตัวอย่างอาหารทั้งหมดตรวจพบสารตกก้างของยาปราบศัตรูพืช และ ประมาณ 1% (รวมถึงแครอท, ผักกาด, มันฝรั่ง , ผลไม้รสเปรี้ยว, องุ่น, สตรอเบอรี่, ขนม ปัง, ปลาและเนื้อ) พบว่ามีระดับเหนือกว่าความปลอดภัย "maximum residue limit" การปนเปื้อนในแครอทค่อนข้างรุนแรงและได้มีการแนะนำให้มีการปอกเปลือกก่อนกิน เนื่องจากยาปราบศัตรูพืชจะมีความเข้มข้นที่ผิว

มลพิษอื่น ๆจะเป็นเป้าของการตรวจสอบติคตามอย่างสม่ำเสมอในอาหาร เช่น โลหะหนัก (โคยเฉพาะอย่างยิ่งตะกั่วและแคคเมียม) และการปนเปื้อนที่เป็นสารอินทรีย์ ในสิ่งแวคล้อม (เช่น PCBs และ dioxins)

รูปที่ 6.7. วิถีทางที่มนุษย์ได้รับมลพิษจากดิน

คำถามท้ายบท

- 1. แหล่งกำเนิดมลพิษที่สำคัญในดินคืออะไร
- 2. เหตุใคมลพิษต่างๆเมื่ออยู่ในคินจึงมีความเสถียรมากกว่าอยู่ในอากาศ
- 3. ผลกระทบโดยตรงของมลพิษในคินที่มีต่อมนุษย์คืออะไร
- มลพิษต่างๆที่พบในดิน มีความสัมพันธ์กับมลพิษที่พบในแหล่งอื่นๆหรือไม่ เพราะ เหตุใด
- เมื่อเปรียบเทียบความเข้มข้นของมลพิษต่างๆที่พบในอากาศ น้ำ และดิน จากแหล่งใด ที่ถูกตรวจพบว่ามีความเข้มข้นสูงสุด เพราะเหตุใด
